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The Initial Boundary Value Problem

To simulate spacetimes numerically on a finite grid we truncate the
computational domain by introducing an artificial outer boundary.

The boundary conditions should:

be compatible with the constraints
reduce reflections
yield a well-posed initial-boundary value problem.
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The AEIHarmonic Code

Generalized harmonic system

2nd differential order in space

Constraint damping

4th order finite differencing

Moving lego-excision

Mesh refinement (with Carpet)

Inspiral and Merger with Harmonic Coordinates. A

smooth crossing of the horizons can clearly be seen.

Jennifer Seiler jese@aei.mpg.de CP SBP Boundaries 2nd Order



Intro AEIHarmonic Harmonic SBP CP Results Conclusions Description Features

”Generalised” Harmonic Coordinates

Coordinates:

GH coordinates, xµ, satisfy the condition �xµ = Γµ = Fµ.

Fµ(gαβ , xρ) as a source function chosen to fine tune gauge to
address the requirements of specific simulations.

Provides solutions of the EEs provided that the constraints:

Cµ ≡ Γµ − Γ̂µ =
1√
−g

∂

∂xκ

(√
−ggλκ

)
− Γ̂µ = 0

and their time derivatives are initially satisfied.

Evolution Variables:

We define the evolution variables g̃µν ≡
√
−ggµν and

Qµν ≡ nρ∂ρg̃
αβ , where nρ is timelike.

This simplifies the constraint equations to

Cµ ≡ − 1√
−g

∂αg̃αµ − Γ̂µ

and gives us a first order in time evolution system.

Jennifer Seiler jese@aei.mpg.de CP SBP Boundaries 2nd Order



Intro AEIHarmonic Harmonic SBP CP Results Conclusions Description Features

Features of Generalized Harmonic Coordinates

System of equations is manifestly symmetric hyperbolic (given
reasonable metric conditions).

Simplifies the evolution equations:

When the gradient of this condition is substituted for terms in
Einstein equations, the PP of each metric element reduces to a
simple wave equation:

gγδgαβ,γδ + . . . = 0

Constraints have the same form.

The constraint equations may be incorporated into the generalized
harmonic coordinate conditions.

Gauge source terms for Harmonic coordinates allow free choice of
gauge for Einstein equations.
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Summation by Parts Boundaries

The SBP method allows us to derive difference operators and boundary condition
which control the energy growth of the system and thus provide a mathematically
and numerically well-posed system.
A discrete difference operator is said to satisfy SBP for a scalar product
E = 〈u, v〉 if the property

〈u,Dv〉+ 〈v ,Du〉 = (u · v) |ba

holds for all functions u, v in [a, b].
One can construct a 3D SBP operator by applying the 1D operator to each
direction. The resulting operator also satisfies SBP with respect to a diagonal
scalar product

(u, v)Σ = hxhyhz

∑
ijk

σijkuijk · vijk ,

Using SBP difference operators we can formulate an energy estimate for our
evolution system...
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Well-Posed Boundaries

For well-posedness, the energy estimate ξ(n) = ‖u (·, t) ‖2 of your system should
satisfy ‖u (·, t) ‖2 ≤ K (t) ‖u (·, 0) ‖2

We use the SBP rule to derive an estimate for the time derivative of the energy of
the system.

Integrate using the SBP rule
Substitute our boundary conditions and apply maximally dissipative condition.
Applying that estimate as a penalty to our original evolution equations
We can then choose coefficients for our boundary system which control the energy
growth of the whole system.

∂tQ
µν = − γ it

γtt
Di+Qµν − (γ ij +

γ itγjt

γtt
)H−1(Aij + E0 − EN)Si )γ

µν

+
2γ ij

γttβ0
H−1E0i [(1 +

γ it

γtt
)Di+γµν − Qµν

γtt
+

2x

r2
(γµν − g0)]

+
2γ ij

γttβN
H−1ENi [(1−

γ it

γtt
)Di+γµν +

Qµν

γtt
+

2x

r2
(γµν − gN)]
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Constraint Preservation

Sommerfeld-type outgoing conditions:(
∂t − ∂x −

1

r

)
(γµν − γµν

0 ) = 0

For CP Boundaries we set the four γtµ from the constraints:

Cµ = −∂tγ
tµ − ∂iγ

iµ − Fµ = 0

and we derive a set of outgoing conditions which specify the other 6
metric components:(

∂x + ∂t +
1

r

) (
γAB − γAB

0

)
= 0

(
∂x + ∂t +

1

r

) (
γtA − γxA − γtA

0 + γxA
0

)
= 0(

∂x + ∂t +
1

r

) (
γtt − 2γxt + γxx − γtt

0 + 2γxt
0 − γxx

0

)
= 0

see: [2] {Kreiss and Winicour, gr-qc 0602051}
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Results for High Shifts

Scalar Waves log y
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Tests with Scalarwave testbed

Stability test for various shifts (0.6 <
γ it

γtt
< 1.1):

utt = −2
γ it

γtt
uit −

γ ij

γtt
uij

Thin = Standard Somerfeld, Thick = SBP

Reflections for standard BCs clearly visible in right hand plot
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Robust Stability Tests

Random Data + Brill
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Random Kernel Amplitude = 0.1
Brill Wave Amplitude = 0.5
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Runs stable for in nonlinear regime for Brill
Waves.

Stable for random data

Standard Sommerfeld type breaks rapidly for
this simulation

Checkerboard + Brill
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for each x(i), y(j), z(k) we add
(−1)i+j+kA highest frequency noise
possible
Checker Kernel A = ±0.2
Brill Wave Amplitude = 0.5
dx = 0.2 xmax = 7.1

Standard sommerfeld seen in green (breaks
quickly)
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Results for Teukolsky/Brill Wave and Schwarschild Runs

Teukolsky
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CPSBP remains stable
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Head-on Runs with CPSBP
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Conclusions
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SBP provides a provably well-posed and demonstrably stable IBVP
for Generalized Harmonic evolutions on a Cartesian grid
Stands up to stability tests
We have developed a method which allows us to consistently use
SBP on a Cartesian grid for corners and edges, and for a 2nd order
in space system
CPSBP provides a constraint preserving and noise reducing
boundary system which is also demonstrable stable and well-posed
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Thank You.
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Constraint Damping

The constraint equations are the generalized harmonic coordinate
conditions: Cµ ≡ Γµ − Γ̂µ = 0

constraint adjustment is done by the term

Aµν = CρAµν
ρ (xα, gαβ , ∂γgαβ)

in the evolution equations

∂α

(
gαβ∂β g̃µν

)
+ Sµν (g , ∂g) +

√
−gAµν

+2
√
−g∇(µ F ν) − g̃µν∇αFα = 0.

Dissipation: ḟ −→ ḟ + ε(δijD+iD−i )w(δijD+iD−i )f where w is a
weight factor that vanishes at the outer boundary. With D+iD−i

from blended SBP stencils.
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HarmonicExcision

(
niD+i

)3
ḟ = 0 to all guard points, in layers stratified by length of the

outward normal pointing vector, from out to in.

LegoExcision with excision coefficients
xµ

r
extrapolated around a smooth

virtual surface for the inner boundary.
Radiation outer boundary conditions (i.e. outgoing only).
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Past Work

[Stewart 1998] Necessary conditions for well-posedness of linearized
Einstein equations with constraint-preserving boundary conditions
(Fourier-Laplace analysis)

[Friedrich & Nagy 1999] To-date the only formulation proven to
satisfy all the requirements for the fully nonlinear (vacuum) Einstein
equations (frame formalism)

[Kreiss & Winicour 2006] Well posed and constraint preserving
boundary conditions for linearized Einstein Equations
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Penalty Method

For the harmonic system the interior is:

∂tQ
µν =

γ it

γtt
Di+Qµν − (γ ij +

γ itγjt

γtt
)H−1Aijγ

µν

With the Boundaries it is:

∂tQ
µν = − γ it

γtt
Di+Qµν − (γ ij +

γ itγjt

γtt
)H−1(Aij + E0 − EN)Si )γ

µν

+
2γ ij

γttβ0
H−1E0i [(1 +

γ it

γtt
)Di+γµν − Qµν

γtt
+

2x

r2
(γµν − g0)]

+
2γ ij

γttβN
H−1ENi [(1−

γ it

γtt
)Di+γµν +

Qµν

γtt
+

2x

r2
(γµν − gN)]

Where γµν ≡
√
−ggµν and Qµν = g tα∂αγµν .
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”Generalised” Harmonic Coordinates

GH coordinates, xµ, satisfy the condition �xµ = Γµ = Fµ.

With the d’Alembertian, �φ ≡ 1√
−g

∂

∂xλ

(
√
−ggλκ ∂φ

∂xκ

)
GH coordinates coupled to the Einstein Equations gives:

Gµν = (Rµν −
1

2
gµνR) = 8πTµν =⇒

1

2
gαβ∂α∂βgµν + gα(µ∂ν)Γ

α + Fµν(g , ∂g ) = 0

Gauge freedom from the ability to pick the four Γ̂µ(gαβ , xρ).

Jennifer Seiler jese@aei.mpg.de CP SBP Boundaries 2nd Order



Excision Approaches Penalty Method Harmonic Description Evolution

AEIHarmonic Evolution

We define the evolution variables g̃µν ≡
√
−ggµν and

Qµν ≡ nρ∂ρg̃
αβ , where nρ is timelike.

This simplifies the constraint equations to

Cµ ≡ − 1√
−g

∂αg̃αµ − Γ̂µ

The AEIHarmonic code implements the first order in time system:

∂t g̃
µν = − g it

g tt
∂i g̃

µν +
1

g tt
Qµν

∂tQ
µν = −∂i

((
g ij − g itg jt

g tt

)
∂j g̃

µν

)
− ∂i

(
g it

g tt
Qµν

)
+ S̃µν
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