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Outline

I show how to extract binary orbital dynamics from GWs by minimization
of the asymmetric spherical harmonic modes of gravitational waveforms.
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General Relativity and Gravitational Waves

Coaction between matter and curvature is described by the Einstein Equations:

Gµν = 8πTµν

Black holes (BH) = Vacuum (Tµν = 0)
Gravitational Waves (GW) = finite deviation from Minkowski spacetime:

gµν = ηνµ + hνµ , |hνµ| � 1.

Linearized field equations in GR

�h̄µν = 16πTµν = (−∂2
t +∇2)h̄µν = 0.
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Gravitational waves

The coupling between matter and geometry is very weak.

Rαβ −
1
2

Rgαβ = kTαβ

k =
8πG
c4 ' 2× 10−43 s2

m · kg

Gravitational waves are small features, difficult to detect.

Unobstructed by intervening matter

Excellent probe into regions opaque to EM radiation.
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Gravitational waves

Currently there are many ground based detectors online which are
designed to detect such passing gravitational waves (LIGO, VIRGO,
TAMA, GEO).

Even for binary black hole inspiral and merger, the signal strength is
likely to be much less than the level of any detector noise.

A technique used for this purpose is matched filtering, in which the
detector output is cross-correlated with a catalog of theoretically
predicted waveforms.

Therefore, chances of detecting a generic astrophysical signal
depend on the size, scope, and accuracy of the theoretical signal
template bank.

The generation of such a template bank requires many models of
the GW emitted from compact binary systems.
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Binary black holes

Optical, radio, and x-ray astronomy have provided us with abundant
evidence that many galaxies contain SMBHs in their central nuclei.
The loudest astrophysical signals in terms of SNR.
Known examples among galactic binaries.

Supermassive – 106 − 109M�.
Low frequency sources – space-based detector (LISA)

Formation processes for stellar mass binaries:
Collapse within a binary neutron star system.
Capture within a dense region, eg. globular cluster.
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Binary black holes

Black holes captured→ highly elliptical orbits.

Radiation of gravitational energy
→ circularisation of orbits. → inspiral (PN)

Decay of orbit leading to
→plunge (NR)→ merger (NR)

Single perturbed BH remnant
→ exponential ringdown to axisymmetric (Kerr) BH.
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Einstein equations in 3+1 form

The Einstein equations are manifestly covariant

Need to reformulate as a Cauchy problem

We have ten equations and ten independent components of the four
metric gµν , the same number of equations as unknowns.

Only six of these ten equations involve second time-derivatives of
the metric.

The other four equations, thus, are not evolutions equations. We call
these our constraint equations.

There are a number of non-unique aspects of the 3+1 decomposition

Choice of evolution variables

Choice of gauge

Binary black hole codes currently use either a harmonic formulation,
or a modified (“conformal traceless” or “BSSN”) ADM system.
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Numerical Relativity

Rαβ −
1
2

gαβR = 8πTαβ

The Einstein equations are a hyperbolic set of
nonlinear wave equations for the geometry

As such, they are most conveniently
solved as an initial-boundary-value problem:

Assume the geometry is known at some initial time t0.
Evolve the data using the Einstein equations.
Prescribe consistent boundary conditions at some finite radius r0.

Geometry specified on an initial data slice:
metric gab specifies the intrinsic geometry of the slice.
extrinsic curvature determines the embedding in 4D space.

Evolution equations are integrated using standard numerical
methods, eg. Runge-Kutta.

The equations are differentiated in space on a discrete
computational grid using finite differencing methods
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Wave extraction

It has become standard to measure
waves as expansions of the
Newman-Penrose Ψ4 scalar.

An independent method measures
gage-invariant perturbations of a
Schwarzschild black hole.

‘Observers’ are placed on a 2-sphere
at some large radius.

Measure odd-parity (Q×lm) and
even-parity (Q+

lm) perturbations of the
background metric.

h+−ih× =
1√
2r

∞∑
`=2

∑̀
m=0

(
Q+
`m−i

∫ t

−∞
Q×`m(t ′)dt ′

)
−2Y `m ,

Jennifer Seiler jennifer.a.seiler@nasa.gov Wigner Deprecession



Intro Motivations GW BH NR WE Horizons Spins

Newman Penrose

The Ψ’s are defined as components of the Weyl tensor Cabcd which
is identical to the Riemann tensor Rabcd . The complex Weyl scalars
Ψ is given by

Ψ4 = Cab m̄a m̄b

Cab = Rab − K Kab + K c
a Kcb − iε cd

a ∇d Kbc

In the chosen a tetrad that separates the radiation part of the Weyl
tensor from the non-radiation content. Using spherical coordinates
we obtain the tetrad:

−→
l ≡ 1√

2
(τ̂ − r̂) ,

−→n ≡ 1√
2

(τ̂ + r̂) ,
−→m ≡ 1√

2
(θ̂ − iφ̂) ,

−→̄
m ≡ 1√

2
(θ̂ + iφ̂) , (1)

The spacetime metric can be described as

gab = 2m(am̄b) − 2n(alb)
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Newman Penrose

Ψ4 can be related to the gravitational radiation in the following way:
in the transverse-traceless (TT) gauge

1
4

(ḧTT
θ̂θ̂
− ḧTT

φ̂φ̂
) = −Rτ̂ θ̂τ̂ θ̂ ,

1
2

ḧTT
θ̂φ̂

= −Rτ̂ θ̂τ̂ φ̂ (2)

Finally, we can use Rabcd = Cabcd (Gµν = 0), to yield the final
relation between Ψ4 and the radiation as a metric perturbation in
terms of polarizations

Ψ4 = −(ḧ+ − i ḧ×) . (3)

Since two factors of
−→̄
m each carries a spin-weight of −1, we

decompose Ψ4 in terms of spin-weight −2 spherical harmonics
−2Y`m(θ, φ), yielding

Ψ4(t ,−→r ) =
1

Mr

∞∑
`=2

∑̀
m=−`

−2C`m(t)−2Y`m(θ, φ) , (4)
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Zerilli Moncrief

Regge and Wheeler formulated a gauge transformation that allows a
radial/angular separation for even and odd parities for some perturbation of GR

δGµν = δRµν = δΓρµν,ρ − Γρµρ,ν ,

δΓi
jk =

1
2

g il (hjl,k + hkl,j − hjk,l ) ,

Perturbations γij can be decomposed using Y`m into γ`mij (t , r) where

γij (t , r , θ, φ) =
∞∑
`=0

∑̀
m=−`

γ`mij (t , r)

γij (t , r , θ, φ) =
6∑

k=0

pk (t , r)Vk (θ, φ)

where {Vk} are basis for tensors on a two-sphere.
In Schwarzschild coordinates, the Regge Wheeler and Zerilli equations may be
written

∂2
t Ψ

(o/e)
`m − ∂2

r Ψ
(o/e)
`m + V (o/e)

` Ψ
(o/e)
`m = S(o/e)

`m

where S(o) is the Regge-Wheeler source function, S are the source function, V
are the potential functions.
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Zerilli Moncrief

From Ψ
(o)
lm and Ψ

(e)
lm we obtain the gravitational wave amplitude

h+ − ih× =
1
r

∑
l,m

√
(`+ 2)!

(`− 2)!
(Ψ

(e)
`m + Ψ

(o)
`m )−2Y `m(θ, φ) +O(

1
r2 )

The areal coordinate r̂ of each extraction sphere is calculated by

r̂ = r̂(r) =

[
1

4π

∫
√
γθθγφφdθdφ

]1/2

−→ S(r̂) =

(
∂ r̂
∂r

)2 ∫
γrr dθdφ

We can calculate the six Regge-Wheeler variables, on these spheres by
integration of combinations of the metric components over each sphere. From
here we can construct the gauge invariant quantities from these Regge-Wheeler
and Zerilli variables

Q×`m =

√
2(l + 2)!

(l − 2)!

[
c×`m1 +

1
2

(
∂r̂ c
×`m
2 − 2

r̂
c×`m2

)]
S
r̂

Q+
`m =

√
2(l − 1)(l + 2)

l(l + 1)

(4r̂S2k2 + l(l + 1)r̂ k1)

(l − 1)(l + 2) + 6M/r̂
.

This formalism is convenient as it gives us h+ and h× already decomposed into `
and m modes with no extra integration stages required.
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Horizons

An event horizon is defined non-locally. Thus it can only be obtained
as part of post-processing for any simulation.

An apparent horizon is defined locally in time on a spacelike slice,
and can thus be calculated at each time-step in a simulation.

It is the outermost smooth closed 2-surface in a slice whose
future-pointing outgoing null geodesics have zero expansion, Θ.

Θ ≡ ∇ini + Kijninj − K = 0

This outermost surface is coincident with the boundary of a “trapped
surface” – i.e. a surface whose future-pointing outgoing null
geodesics have negative expansion.

The existence of such a surface automatically implies the existence
of a black hole (given certain technical assumptions are met,
including energy conditions and a reasonable gauge).
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BH Data

Horizon spins, relative velocities, and masses extracted from the
shape and coordinate motion of those black hole horizons.
The angular momentum of the horizon comes from the horizon φ
Killing vector field

Lφqij = 0 ,

where qij := γij − sisj is the induced metric on the horizon for
outward-pointing normals si . We can then derive the magnitude of
the angular momentum from

JH =
1

8π

∮
S
φ`smK`mdA .

From the angular momentum and horizon surface we can then
obtain the mass of the black hole from the equation

M2
H =

AH

16π
+

4πJ2
H

AH
,

where AH is the horizon area.
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Parameter studies with spinning black holes

Aligned spin leads to an orbital hangup.
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Kicks

For an equal-mass, non-spinning binary
merger, the remnant will be a stationary,
spinning black hole.

If an asymmetry in the bodies is present, the
emitted in gravitational waves will also have
asymmetry.

As a result, the remnant black hole will have
momentum relative to distant stationary
observers, called a recoil or kick.
Asymmetries in the emitted gravitational wave
energy are a result of:

Unequal masses.
Unequal spin magnitudes.
Spins which are misaligned with each other or
the orbital angular momentum.
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Black hole kicks

The recoil results from couplings of various wave modes, which are integrated
over the entire inspiral time.

Fi ≡ Ṗi =
r2

16π

∫
dΩ ni

(
ḣ2
+ + ḣ2

×
)

PN (2.5) suggests a linear increase of recoil with spin ratio:

|v |kick = c1
q2(1− q)

(1 + q)5 + c2
a2q2(1− qa1/a2)

(1 + q)5 = c̃2a2

(
1− a1

a2

)

In fact, the numerical data points to a
quadratic dependence:

|v |kick = a2(c1 − c2(
a1

a2
) + c3(

a1

a2
)2)

The maximum recoil for the
anti-aligned case:

|v |kick = 448± 5km/s
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Spins

Equation to predict final spin of merged black hole

|afin| =
1

(1 + q)2

[
|a1|2 + |a2|2q4 + 2|a2||a1|q2 cosα+

2
(
|a1| cosβ + |a2|q2 cos γ

)
|`|q + |`|2q2

]1/2
,

where cosα ≡ â1 · â2 , cosβ ≡ â1 · ˆ̀, cos γ ≡ â2 · ˆ̀.
In order to obtain |`| we need to match this equation against
general second order polynomial expansions for:

Equal mass, unequal but aligned spin binaries
Unequal mass, equal spin binaries

|`| = s4

(1 + q2)2

(
|a1|2 + |a2|2q4 + 2|a1||a2|q2 cosα

)
+(

s5ν + t0 + 2
1 + q2

)(
|a1| cosβ + |a2|q2 cos γ

)
+

2
√

3 + t2ν + t3ν
2 .

Numerical simulations to obtain s4, s5, t0, t2, t3.
Test against generic misaligned spin binaries.
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Precession in General Relativity

Spins are not aligned with orbital angular momentum will precess

L = Lorb + S1 + S2 ,
∂L
∂t
≈ ∂Jrad

∂t

causing whole system to precess, resulting in complex dynamics
Even without GR binary precession incredible complicated. For EMRI limit for
leading order (each term at least 1 page):

H = Mc2 + H0 + V1 + V1 + VS1 + VS2 + VS1,S2 + VQ1 + VQ1

the EMRI approximations derived from 1978 plus conservations assumptions
currently the only way spins are accounted for in PN
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Motivations

Parameter studies with simple precession tracking will give us a
phenomenological precession model

could give us better formulae for SS and SO interaction for EOB and
PN
combining this model with Wigner rotation in the opposite direction
gives us a tool to create generically precession waveforms . . .

Phenomenological templates for precessing systems
Cut down the parameter space by 4 degrees of freedom
Challenges of NR:

Parameter space is large and hard to model generically
Simulations are computationally expensive and slow
Length and accuracy requirements are not well known
Setting up precessing simulations is especially challenging

Numerically, this is also a tool to get gauge invariant measurements
(as opposed to on the horizon)

especially for waveforms extracted at null infinity (i.e. CCM/CCE)
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Waveform Data

Parameter Horizon Waveform

Masses M2
H = AH

16π +
4πJ2

H
AH

A(Ψ4)

L̂orb (Θ ≡ ∇ini + Kijninj − K = 0)z θ(max(Ψ22 −Ψ20))

|L| ?? L0 −
∫
|L̂ · J̇|dt

Phase/ r̂ -axis (Θ = 0)1 − (Θ = 0)2 φ(min(Ψ20))

Separation |(Θ = 0)1 − (Θ = 0)2| ∼ R0 − f (JRad , φ̇)

Sfin JH = 1
8π

∮
S φ

`smK`mdA Quasinormal
S

∑
JH,i = 1

8π

∮
S φ

`smK`mdA
−→
L −−→J

Kick ??
r2

16π

∫
dΩ ni

(
ḣ2
+ + ḣ2

×
)

S1 and S2 JH = 1
8π

∮
S φ

`smK`mdA ??
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Wigner Rotation

In precessing systems the dominant
` = 2,m = ±2 quadrupole mode mixes into
non-symmetric modes as the obsever rotates
off the Lorb axis

This ruins existing phenomenological
waveform formulae

Rotate reference frame to return to
quadrupole dominant system

Maximize Ψ4,22 and minimize Ψ4,20

Tracks the direction of Lorb relative to observes
and precession of the system
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Implementation

We consider SWSHs of spin weight s = −2:

Ψ0
4 = eiωu

∑
`m

−2ψ`m −2Y`m(θ, φ),

The transformation of the Weyl scalar Ψ̄0
4

Ψ̄0
4(θ′, φ′) = e2iχ(θ(θ′),φ(φ′))Ψ0

4(θ(θ′), φ(φ′)).

Given the transformation of the harmonics

2Y`m′(θ′(θ, φ), φ′(θ, φ)) =
∑̀

m=−`

D(`)−1
m;m′ 2Y`m(θ, φ) , ψ′`m′ =

∑̀
m=−`

2ψ`mD(`)−1
m;m′ ,

where D(`)−1
m;m′ is the Wigner rotation matrix given by

D(`)
m;m′(θ, φ) = e−imφ

√
(`+ m)!(`−m)!(`+ m′)!(`−m′)!

×
∑

k

−1k+m′−m

k!(`+ m − k)!(`−m′ − k)!(m′ −m + k)!
×
(

sin
θ

2

)2k+m′−m (
cos

θ

2

)2`−2k−m′+m
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Wigner Rotation

Use iterative numerical solver to find values of
θ, and φ for each time that minimize the
amplitude of the asymmetric mode ψ′20 and
maximize ψ′22

Find rotation angles that place the observer
back on the axis of the orbital angular
momentum of the system.

The modes |m| = 1 will vanish only when the
two black holes can be exchanged by
symmetry

The m = 0 optimally is reduced to a
non-oscillating mode related to memory
effects. This complicates minimization.
Maximizing only the ` = 2, m = 2 modes for equal mass systems is
perfectly sound. Unequal mass systems have a natural asymmetry that
will show in the ` = 2, m = 1 modes .
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Results for Tilted Simulation

 1e-20

 1e-18

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0  100  200  300  400  500  600

Ψ
lm

 A
m

p
lit

u
d

e

Time (M)

Transformed Ψ4,22
Original Ψ4,22

Transformed Ψ4,20
Original Ψ4,20

-5 -4 -3 -2 -1  0  1  2  3  4  5
-5
-4
-3
-2
-1
 0
 1
 2
 3
 4
 5

-2.5
-2

-1.5
-1

-0.5
 0

 0.5
 1

 1.5
 2

 2.5

z (M)

x (M)

y (M)

z (M)

Jennifer Seiler jennifer.a.seiler@nasa.gov Wigner Deprecession



Methods Results Conclusions Future Tilt Precession

Results for Tilted Simulation
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Results For Precessing Simulations

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0  200  400  600  800  1000

Ψ
lm

 A
m

p
lit

u
d

e

Time (M)

Transformed Ψ4,22
Original Ψ4,22

Transformed Ψ4,20
Original Ψ4,20

-8

-6

-4

-2

 0

 2

 4

 6

 8 -8
-6

-4
-2

 0
 2

 4
 6

 8

-3

-2

-1

 0

 1

 2

 3

Jennifer Seiler jennifer.a.seiler@nasa.gov Wigner Deprecession



Methods Results Conclusions Future Tilt Precession

Results For Precessing Simulations
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Conclusions

Accurate method of tracking orbital precession evolution from only
observed/extracted waveforms.

Gauge invariant measures of angular momentum, and spin direction.

Precession reconstruction from only waveforms data.

Significant simplification of the emitted GW signal.

Deprecessed WFs have high overlap with non-precessing
equivalents.

Potential for method for the generation of generic precessing
binaries.
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Future Work

Hybrid model of precession rates
Wigner rotation of non-precessing runs to cover parameter space
Better understanding of SS, SO contributions

Test of momentum measures accuracy

Better understanding of mode contributions, for better
phenomenological waveform predictions

Final spin direction predictions
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Thank You.
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