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Summary of Dissertation

Numerical evolutions of symmetric and asymmetric binary black hole
mergers in to explore the parameter space of binary black hole
inspirals:

Establish bounds on phenomenological formulae for the final spin and
recoil velocity of merged black holes from arbitrary initial data
parameters
Focus on gravitational-wave emission to quantify how much spin
effects contribute to the signal-to-noise ratio and to the relative event
rates for the representative ranges in masses and detectors

Analytical inspiral-merger-ringdown gravitational waveforms from
black-hole (BH) binaries with non-precessing spins by matching a
post-Newtonian description of the inspiral to our numerical
calculations

Constraint-preserving boundary conditions for the BSSN evolution
system

Well-posed constraint-preserving outer boundary conditions for the
Harmonic evolution system . . .
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General Relativity and Gravitational Waves

Coaction between matter and curvature is described by the Einstein Equations:

Gµν = 8πTµν

Black holes (BH) = Vacuum (Tµν = 0)
Gravitational Waves (GW) = finite deviation from Minkowski spacetime:

gµν = ηνµ + hνµ , |hνµ| � 1.

Linearized field equations in GR

�h̄µν = 16πTµν = (−∂2
t +∇2)h̄µν = 0.
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Gravitational waves

Gravitational radiation accompanies quadrupolar acceleration of any
massive objects as cross-polarized transverse quadrupolar ripples in
spacetime will radiate out longitudinally from this system, giving a
metric perturbation

hij = h+(e+)ij − h×(e×)ij

Indirect observation: binary pulsar PSR 1913+16
Hulse-Taylor – Nobel Prize 1993.
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Gravitational waves

The coupling between matter and geometry is very weak.

Rαβ −
1
2

Rgαβ = kTαβ

k =
8πG
c4 ' 2× 10−43 s2

m · kg

Gravitational waves are small features, difficult to detect.

Unobstructed by intervening matter

Excellent probe into regions opaque to EM radiation.

Jennifer Seiler jese@aei.mpg.de CP SBP Boundaries 2nd Order



Thesis Intro Harmonic IBVP GW BH NR FD, MoL, & 3+1 WP

Gravitational waves

Currently there are many ground based detectors online which are
designed to detect such passing gravitational waves (LIGO, VIRGO,
TAMA, GEO).

Even for binary black hole inspiral and merger, the signal strength is
likely to be much less than the level of any detector noise.

A technique used for this purpose is matched filtering, in which the
detector output is cross-correlated with a catalog of theoretically
predicted waveforms.

Therefore, chances of detecting a generic astrophysical signal
depend on the size, scope, and accuracy of the theoretical signal
template bank.

The generation of such a template bank requires many models of
the GW emitted from compact binary systems.
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Binary black holes

Optical, radio, and x-ray astronomy have provided us with abundant
evidence that many galaxies contain SMBHs in their central nuclei.
The loudest astrophysical signals in terms of SNR.
Known examples among galactic binaries.

Supermassive – 106 − 109M�.
Low frequency sources – space-based detector (LISA)

Formation processes for stellar mass binaries:
Collapse within a binary neutron star system.
Capture within a dense region, eg. globular cluster.
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Binary black holes

Black holes captured→ highly elliptical orbits.

Radiation of gravitational energy
→ circularisation of orbits. → inspiral (PN)

Decay of orbit leading to
→plunge (NR)→ merger (NR)

Single perturbed BH remnant
→ exponential ringdown to axisymmetric (Kerr) BH.
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Numerical Relativity

Rαβ −
1
2

gαβR = 8πTαβ

The Einstein equations are a hyperbolic set of
nonlinear wave equations for the geometry

As such, they are most conveniently
solved as an initial-boundary-value problem:

Assume the geometry is known at some initial time t0.
Evolve the data using the Einstein equations.
Prescribe consistent boundary conditions at some finite radius r0.

Geometry specified on an initial data slice:
metric gab specifies the intrinsic geometry of the slice.
extrinsic curvature determines the embedding in 4D space.

Evolution equations are integrated using standard numerical
methods, eg. Runge-Kutta.

The equations are differentiated in space on a discrete
computational grid using finite differencing methods
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Finite Differencing

discretize our continuum intial data and solve the spatial derivatives
in our PDEs.

xi = (i − 1
2

)hx , 0 ≤ i ≤ Nx ,

finite difference approach using Taylor series expansions

f (x + h) = f (x) + h
df
dx
|x +

h2

2
d2f
dx2 |x +

h3

6
d3f
dx3 |x + . . .

f (x − h) = f (x)− h
df
dx
|x −

h2

2
d2f
dx2 |x −

h3

6
d3f
dx3 |x + . . .

df
dx

=
f (x + h)− f (x − h)

2h
− 1

6
f ′′′(ζ)h2 ,

Fourth order:

df
dx

=
−f (x + 2h) + 8f (x + h)− 8f (x − h) + f (x − 2h)

12h
replace PDE with an algebraic equation on a discrete grid
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Method of Lines

FD the spatial derivatives of the PDE leaving the time derivatives
continuous.
This leads to a coupled set of ODEs for the time dependence of the
variables u = (uij ) at the spatial grid points,

∂tu = f (t , u)

ODE integrator to integrate these ODEs forward in time.

‖ un+1 − un ‖= O(∆tp+1)
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Complications of Numerical Relativity

The initial-boundary-value problem needs to be well-posed.
Choice of geometrical variables→ strongly hyperbolic evolution
system.

Evolution of the coordinates needs to be carefully considered.
The BH centers are physical singularities:

Treated as “punctures” by choice of gauge.
Excised by imposing a boundary condition around the singularity.

It is only within the last 5 years that this problem has been solved:
Pretorius (2005), Campanelli et al. (2005), Baker et al. (2005).
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Einstein equations in 3+1 form

The Einstein equations are manifestly covariant

Need to reformulate as a Cauchy problem

We have ten equations and ten independent components of the four
metric gµν , the same number of equations as unknowns.

Only six of these ten equations involve second time-derivatives of
the metric.

The other four equations, thus, are not evolutions equations. We call
these our constraint equations.

There are a number of non-unique aspects of the 3+1 decomposition

Choice of evolution variables

Choice of gauge

Binary black hole codes currently use either a harmonic formulation,
or a modified (“conformal traceless” or “BSSN”) ADM system.
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Coordinate conditions

There are a number of features we’d like to see in a good choice of
coordinates:

Cover regions of spacetime of interest
Also some geometric criteria: Preserve volume elements, prevent
shear, avoid caustics.

Simplify equations of motion
eliminate evolution variables
recast equations into nice form (eg. harmonic coords)

Simplify the physics (eg. reduce dynamics on the numerical grid)
minimal distortion (Smarr-York 1978), “symmetry seeking”
(Garfinkle-Gundlach 1999)
known asymptotic states

Avoid physical singularities

Computationally efficient

Compatible with hyperbolicity, well-posedness
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Hyperbolic formulations

The 3+1 Einstein evolution equations can be written symbolically in
the form:

∂tu + Ai∂iu = s(u)

Propagation of characteristics is determined by eigenvalues of A.
This is significant, among other things, for the numerical
Courant-Friedrich-Levy (CFL) condition, and setting boundary
conditions.

The system is strongly hyperbolic if A has real eigenvalues and is
diagonalizable.

The initial value problem is well-posed if and only if A has a
complete set of eigenvalues.

A stable numerical scheme can only be implemented for well-posed
systems.
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Reduction to explicitly hyperbolic form

Expanding
Rαβ = 0,

we get a PDE whose principle part contains mixed 2nd-derivatives
of the metric:

−1
2
�gab −

1
2

g ij (gij,ab − gia,bj − gib,aj ) + g ij (Γk
ai Γjkb − Γk

abΓijk
)

= 0.

Harmonic gauge: Mixed 2nd derivatives can be removed by
introducing the new variables −gai

,i = Γa:

�gab = 2gi(a∂b)Γ
i + 2Γi Γ(ab)i + 2g ij (2Γk

i(aΓb)kj + Γk
ai Γkjb

)
The Einstein equations are explicitly in the form of a 2nd order wave
equation for the metric.
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"Generalised" Harmonic Coordinates

Coordinates:
GH coordinates, xµ, satisfy the condition �xµ = Γµ = Fµ.
Fµ(gαβ , xρ) as a source function chosen to fine tune gauge to
address the requirements of specific simulations.
Provides solutions of the EEs provided that the constraints:

Cµ ≡ Γµ − Γ̂µ =
1√
−g

∂

∂xκ
(√
−ggλκ

)
− Γ̂µ = 0

and their time derivatives are initially satisfied.
Evolution Variables:

We define the evolution variables g̃µν ≡
√
−ggµν and

Qµν ≡ nρ∂ρg̃αβ , where nρ is timelike.
This simplifies the constraint equations to

Cµ ≡ − 1√
−g

∂αg̃αµ − Γ̂µ

and gives us a first order in time evolution system.
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Harmonic coordinates

Hyperbolicity, and thus stability, follows directly from the reduction to
harmonic form.
The harmonic reformulation comes at the price of introducing 4 new
variables:

Γα := −∂βgαβ .
These are evolved independently of the metric, thus we have new
constraints which must be satisfied by any numerical scheme:

Γα + ∂βgαβ = 0.

The first stable evolution of a binary black hole system used
harmonic coordinates [Pretorius 2005].
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The AEIHarmonic Code

Generalized harmonic system

2nd differential order in space

Constraint damping

4th order finite differencing

Moving lego-excision

Mesh refinement (with Carpet)

Written for the Cactus
Computational Toolkit

4th order Runga Kutta
Time integration

Inspiral and Merger with Harmonic Coordinates. A smooth

crossing of the horizons can clearly be seen.
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The Initial Boundary Value Problem

To simulate spacetimes numerically on a finite grid we truncate the
computational domain by introducing an artificial outer boundary.
The boundary conditions should:

be compatible with the constraints
reduce reflections
yield a well-posed initial-boundary value problem.
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Summation by Parts Boundaries

The SBP method allows us to derive difference operators and
boundary conditions which control the energy growth of the system
and thus provide a mathematically and numerically well-posed
system.
A discrete difference operator is said to satisfy SBP for a scalar
product 〈u, v〉 if the property

〈u,Dv〉+ 〈v ,Du〉 = (u · v) |ba

holds for all functions u, v in [a, b].

One can construct a 3D SBP operator by applying the 1D operator
to each direction. The resulting operator also satisfies SBP with
respect to a diagonal scalar product

(u, v)Σ = hx hy hz

∑
ijk

σijk uijk · vijk ,

Using SBP difference operators we can formulate an energy
estimate for our evolution system...

Jennifer Seiler jese@aei.mpg.de CP SBP Boundaries 2nd Order



Thesis Intro Harmonic IBVP SBP SAT CP

SBP Operators

constructing finite difference stencils D of a given order, τ , such that

Du =
du
dx

+O(hτ ),

and which satisfy the SBP property.

determined up to the boundaries by solving the set of polynomials

Dxm − dxm

dx
= 0, m = 0, 1, . . . , τ,

which establish the order of accuracy τ of the approximation.

The SBP rule provides an additional set of restrictions,

〈u,Du〉 = −1
2

u2(0) ,

〈u + v ,D (u + v)〉h = 〈D (u + v) , u + v〉h − (u0 + v0)2
,
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Well-Posed Boundaries

The use of SAT (’penalty’) allows us to choose values for the free
parameters in the boundary terms which conserve the energy in the
system.
∂tQµν = −γ

it

γ tt Di+Qµν − (γ ij +
γ itγ jt

γ tt )H−1(Aij + (E0 − EN)Si )γ
µν + S̃

+ τ0i H
−1E0i (α0i g

µν
t + β0i Sigµν + γ0i g

µν − e0i g0)

+ τNi H
−1ENi (αNi g

µν
t + βNi Sigµν + γNi g

µν − eNi gN)

I determine the time dependence of the energy for this system with
these penalties in order to derive coefficients for my penalty terms at
the boundary points.

d
dt

(
‖ut‖2 + ‖− γ

ij

γ tt uiuj‖
)

= (〈ut , utt〉+〈utt , ut〉)−
γ ij

γ tt (〈ui , ujt〉+〈uit , uj〉)
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Well-Posed Boundaries

I solve for this dependence by the SBP rule and substituting in the
boundary conditions.

(∂t − ∂x )
[
r2 (gµν − gµν0 )

]
= 0

we solve for the coefficients then by enforcing maximally dissipative
boundaries.

This gives a well-posed semi-discrete system by placing a bound on
the energy growth of the system.

∂tQµν = −γ
it

γ tt Di+Qµν − (γ ij +
γ itγ jt

γ tt )H−1(Aij + (E0 − EN)Si )γ
µν

+
2γ ij

γ ttβ0
H−1E0i [(1 +

γ it

γ tt )Di+γ
µν − Qµν

γ tt +
2x
r2 (γµν − g0)]

+
2γ ij

γ ttβN
H−1ENi [(1−

γ it

γ tt )Di+γ
µν +

Qµν

γ tt +
2x
r2 (γµν − gN)]
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Constraint Preservation

Sommerfeld-type outgoing conditions:(
∂t − ∂x −

1
r

)
(γµν − γµν0 ) = 0

For CP Boundaries we set the fourγ tµ from the constraints:

Cµ = −∂tγ
tµ − ∂iγ

iµ − Fµ = 0

and we derive a set of outgoing conditions which specify the other 6
metric components:(

∂x + ∂t +
1
r

)(
γAB − γAB

0

)
= 0

(
∂x + ∂t +

1
r

)(
γ tA − γxA − γ tA

0 + γxA
0

)
= 0(

∂x + ∂t +
1
r

)(
γ tt − 2γxt + γxx − γ tt

0 + 2γxt
0 − γxx

0

)
= 0

which additionally gives us a bound on the constraint growth
see: {Kreiss and Winicour, gr-qc 0602051}
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Test Waves

Shifted scalar waves
Linear waves with shift β i = g it/gtt :“

∂2
t − 2β i∂i∂t −

“
δij − β iβ j

”
∂i∂j

”
φ = 0 ,

Teukolsky waves
Quadrupole wave solutions to the linearized Einstein equations:

ds2 = −dt2 + (1 + Afrr )dr 2 + (Bfrφ)rdrdθ + (Bfrθ)r sin θdrdφ+ (1 + Cf (1)
θθ + Af (2)

θθ )r 2dθ2

+ [2(A− 2C)fθφ]r 2 sin θdθdφ+ (1 + Cf (1)
φφ + Af (2)

φφ)r 2 sin2 θdφ2 .

Brill waves
Asymmetric non-linear waves: the initial spatial metric takes the form

ds2 = Ψ4[e2q(dρ2 + dz2) + ρ2dφ2],

in cylindrical (ρ, φ, z) coordinates. I choose q of the form of a Gaussian packet
centered at the origin,

q = aρ2e−r2
,
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Stringent Tests

Convergence tests
2D Shifted gauge wave test
known exact solution

Stability tests
Brill with random noise
Brill with checkerboard

Black holes
Perturbed Schwarzschild
Head-on collision of equal mass black holes
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Results for High Shifts
Scalar Waves log y
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 1
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| ∞

t/M
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Non-SBP git=0.7

SBP git=0.8
Non-SBP git=0.8

SBP git=0.9
Non-SBP git=0.9

SBP git=1.0
Non-SBP git=1.0

SBP git=1.1
Non-SBP git=1.1

Tests with shifted scalar wave testbed
Stability test for various shifts (0.6 < β i < 1.1):(

∂2
t − 2β i∂i∂t −

(
δij − β iβ j) ∂i∂j

)
φ = 0 ,

Thin = Standard Sommerfeld, Thick = SBP
SBP stable for superluminal shifts
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Results for High Shifts
Scalar Waves no log
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Tests with shifted scalar wave testbed
Stability test for various shifts (0.6 < β i < 1.1):
Thin = Standard Sommerfeld, Thick = SBP
Reflections for standard BCs clearly visible for naive boundaries,
reflect back and forth hence the stepping
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Robust Stability Tests
Random Data + Brill
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Random Data + Brill Wave

Random Kernel Amplitude = 0.1
Brill Wave Amplitude = 0.5
dx = 0.2 , xmax = 7.1

Runs stable for in nonlinear regime for Brill Waves.
Stable for random data
Standard Sommerfeld type breaks rapidly for this simulation
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Robust Stability Tests
Checkerboard + Brill
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BW with Checkerboard CPSBP ||C0||2BW with Checkerboard Somm ||C0||2BW with Checkerboard SBP ||C0||2BW CPSBP ||C0||2

Checkerboard Data + Brill Wave

for each x(i), y(j), z(k) we add (−1)i+j+k A
highest frequency noise possible
Checker Kernel A = ±0.2
Brill Wave Amplitude = 0.5
dx = 0.2 , xmax = 7.1

Standard Sommerfeld seen in green (breaks quickly)
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Results for Teukolsky Waves
Teukolsky

 1e-15

 1e-14

 1e-13

 1e-12

 1e-11

 1e-10

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 1e-04

 0  100  200  300  400  500

||C
0 || 2

t/M

Teuk CPSBP ||C0||2Teuk Somm ||C0||2Teuk SBP ||C0||2

Constraint Norms for runs with high amplitude Teukolsky Waves:
CP ’SBP’ = Red, SBP = Magenta

Standard Sommerfeld-type = Blue

Boundaries at 7.1M, amplitude 0.001
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Results for Schwarzschild Runs

Schwarzschild
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Schwarzschild run with boundaries too close in (40 M) for
sommerfeld-type boundaries

CPSBP remains stable
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Shifted Gauge Wave Convergence Test

ds2 = (1− A sin
„

2π(x − t)

d

«
)

(−dt2 + dx2) + dy2

 0
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 0.08

 0.1

 0  50  100  150  200

ε

t/M

dx = 0.2
dx = 0.1

dx = 0.05
Sommerfeld

A = 0.01, d = 2, and boundary width x , y ∈ [−7, 7].
dx , dy = 0.05, 0.1, 0.2 with the error E =‖ Φρ − Φexact ‖∞
convergence rates

r(t) = log2(
‖ Φh=2δx − Φexact ‖∞
‖ Φh=δx − Φexact ‖∞

) ,

r(t = 10)(0.05.0.1) = 4.0380, r(t = 30)(0.05.0.1) = 3.3907, and
r(t = 200)(0.1.0.2) = 2.0457.
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Head-on Runs with CPSBP
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Head-on Collision (mass 0.5, 2.5 M separation)
L2 Norm of Constraints for CPSBP vs regular boundaries
Significant improvement in constraint preservation
Circumference ratios almost identical
Some boundary effects are visible for the standard BC runs which
are not in the CPSBP run
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Conclusions

-0.2
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Q
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HO Somm  R=70 l=2 m=0

provides a provably well-posed and demonstrably stable IBVP for
Generalized Harmonic evolutions on a Cartesian grid
Stands up to stability tests
We have developed a method which allows us to consistently use
SBP on a Cartesian grid for corners and edges, and for a 2nd order
in space system
CPSBP provides a constraint preserving and noise reducing
boundary system which is also demonstrable stable and well-posed
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Parameter studies with spinning black holes

Aligned spin leads to an orbital hangup.
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Kicks

For an equal-mass, non-spinning binary
merger, the remnant will be a stationary,
spinning black hole.

If an asymmetry in the bodies is present, the
emitted in gravitational waves will also have
asymmetry.

As a result, the remnant black hole will have
momentum relative to distant stationary
observers, called a recoil or kick.
Asymmetries in the emitted gravitational wave
energy are a result of:

Unequal masses.
Unequal spin magnitudes.
Spins which are misaligned with each other or
the orbital angular momentum.
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Black hole kicks

The recoil results from couplings of various wave modes, which are integrated
over the entire inspiral time.

Fi ≡ Ṗi =
r2

16π

∫
dΩ ni

(
ḣ2

+ + ḣ2
×
)

PN (2.5) suggests a linear increase of recoil with spin ratio:

|v |kick = c1
q2(1− q)

(1 + q)5 + c2
a2q2(1− qa1/a2)

(1 + q)5 = c̃2a2

(
1− a1

a2

)

In fact, the numerical data points to a
quadratic dependence:

|v |kick = a2(c1 − c2(
a1

a2
) + c3(

a1

a2
)2)

The maximum recoil for the
anti-aligned case:

|v |kick = 448± 5km/s
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Recoil velocities

The recoil velocity of the final BH can be fit to a quadratic function of
the initial BH spins (a1, a2):

|vkick| = |c1(a1 − a2) + c2(a 2
1 − a 2

2 )| .

c1 = −220.97± 0.78 , c2 = 45.52± 2.99

Zero kick when a1 = a2 Linear scaling along a1 = −a2
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Spins

Equation to predict final spin of merged black hole

|a�n| =
1

(1 + q)2

[
|a1|2 + |a2|2q4 + 2|a2||a1|q2 cosα+

2
(
|a1| cosβ + |a2|q2 cos γ

)
|`|q + |`|2q2

]1/2
,

where cosα ≡ â1 · â2 , cosβ ≡ â1 · ˆ̀, cos γ ≡ â2 · ˆ̀.
In order to obtain |`| we need to match this equation against
general second order polynomial expansions for:

Equal mass, unequal but aligned spin binaries
Unequal mass, equal spin binaries

|`| =
s4

(1 + q2)2

“
|a1|2 + |a2|2q4 + 2|a1||a2|q2 cosα

”
+„

s5ν + t0 + 2
1 + q2

« “
|a1| cosβ + |a2|q2 cos γ

”
+

2
√

3 + t2ν + t3ν
2 .

Numerical simulations to obtain s4, s5, t0, t2, t3.
Test against generic misaligned spin binaries.
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Unequal Mass, Aligned Spins

The spin of the final black hole has been determined for very generic
initial conditions:

Arbitrary aligned spins
Unequal masses

In the extreme-mass-ratio limit, approximation methods can be used.
a�n = a + s4a2ν + s5aν2 + t0aν + 2

√
3ν + t2ν2 + t3ν3
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s4 = −0.129± 0.012

s5 = −0.384± 0.261

t0 = −2.686± 0.065

t2 = −3.454± 0.132

t3 = 2.353± 0.548
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Detection

Each of these binaries and across a set of different masses we calculate
the signal-to-noise ratio (SNR) for the LIGO, enhanced LIGO (eLIGO),
advanced LIGO (AdLIGO), Virgo, advanced Virgo (AdVirgo), and LISA
detectors.

ρavg =
1
π

∑
`m

∫
df
|h̃`m(f )|2

Sh(f )
.

Sh(f ) is the noise power spectral density for a given detector.
Equal-spin binaries with maximum spin aligned are more than “three
times as loud” as the corresponding binaries with anti-aligned spins,
thus corresponding to event rates up to 27 times larger.
Energy radiated in gravitational waves always have efficiencies
Erad/M & 3.6%, which can become as large as Erad/M ' 10% for
maximally spinning binaries.
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Detection

For any value of a, the maximum horizon distance/SNR also marks
the “optimal mass” for the binary Mopt.
For any mass, the SNR can be described with a low-order
polynomial of the initial spins ρ = ρ(a1, a2) and generally it
increases with the total dimensionless spin along the angular
momentum direction, a ≡ 1

2 (a1 + a2) · L̂.
Higher-order contributions in the waveforms with ` ≤ 4 for low
masses M ∈ [20, 100] they contribute, say for the LIGO detector,
≈ 2.5%, whereas for intermediate masses M > 100 M� they
contribute ≈ 8%.Jennifer Seiler jese@aei.mpg.de CP SBP Boundaries 2nd Order
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Distinguisability

The match between two waveforms h1(t) and h2(t) can be calculated via the weighted scalar
product

〈h1|h2〉 = 4<
Z ∞

0
df

h̃1(f )h̃∗2 (f )

Sh(f )
.

The overlap is then given by the normalized scalar product

O[h1, h2] =
〈h1|h2〉p
〈h1|h1〉〈h2|h2〉

, Mbest ≡ max
tA

max
Φ1

max
Φ2
{O[h1, h2]} .

That the overlap is also very high between the nonspinning binary and the binary with equal and
antialigned spins, s0 − s−8
The waveform from a nonspinning binary can be extremely useful across the whole spin diagram
and yield very large overlaps even for binaries with very high spins.
The diagonal a1 = −a2 (the u sequence) cannot be distinguished within our given numerical
accuracy, whereas configurations along the diagonal a1 = a2 (the s sequence) are clearly
different.

Jennifer Seiler jese@aei.mpg.de CP SBP Boundaries 2nd Order



Results Conclusions Publications Other Summary

Conclusions

Constructed a set of stable, well-posed, constraint preserving
boundaries, which reduce reflection and improve accuracy for the
Harmonic evolution system
Ran a series of binary black hole configuration to cover the
parameter space of aligned black hole spins and mass ratios

Constructed phenomenological formulae for the prediction of the spin
and kick of the merger remnant
Kick depends quadratically on spin along (a1 = −a2) against PN
predictions
Quadratic fit for final spin fit from NR results and EMRI requirements

Determined SNR for various masses and distances of binary
systems from NR and PN data

Developed analytic inspiral-merger-ringdown gravitational
waveforms from black-hole (BH) binaries with non-precessing spins
by matching a post-Newtonian description of the inspiral to our
numerical calculations, we obtain a waveform family with a
conveniently small number of physical parameters
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Thank You.
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Wave extraction

It has become standard to measure
waves as expansions of the
Newman-Penrose Ψ4 scalar.

An independent method measures
gage-invariant perturbations of a
Schwarzschild black hole.

‘Observers’ are placed on a 2-sphere
at some large radius.

Measure odd-parity (Q×lm) and
even-parity (Q+

lm) perturbations of the
background metric.

h+−ih× =
1√
2r

∞∑
`=2

∑̀
m=0

(
Q+
`m−i

∫ t

−∞
Q×`m(t ′)dt ′

)
−2Y `m ,
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Constraint Damping

The constraint equations are the generalized harmonic coordinate
conditions: Cµ ≡ Γµ − Γ̂µ = 0

constraint adjustment is done by the term

Aµν = CρAµνρ (xα, gαβ , ∂γgαβ)

in the evolution equations

∂α
(
gαβ∂β g̃µν

)
+ Sµν (g, ∂g) +

√
−gAµν

+2
√
−g∇(µF ν) − g̃µν∇αFα = 0.

Dissipation: ḟ −→ ḟ + ε(δijD+iD−i )w(δijD+iD−i )f where w is a
weight factor that vanishes at the outer boundary. With D+iD−i from
blended SBP stencils.
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HarmonicExcision

(
niD+i

)3
ḟ = 0 to all guard points, in layers stratified by length of the

outward normal pointing vector, from out to in.

LegoExcision with excision coefficients
xµ

r
extrapolated around a smooth

virtual surface for the inner boundary.
Radiation outer boundary conditions (i.e. outgoing only).
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AEIHarmonic Evolution

We define the evolution variables g̃µν ≡
√
−ggµν and

Qµν ≡ nρ∂ρg̃αβ , where nρ is timelike.

This simplifies the constraint equations to

Cµ ≡ − 1√
−g

∂αg̃αµ − Γ̂µ

The AEIHarmonic code implements the first order in time system:

∂t g̃µν = −g it

gtt ∂i g̃µν +
1

gtt Qµν

∂tQµν = −∂i

((
g ij − g itg jt

gtt

)
∂j g̃µν

)
− ∂i

(
g it

gtt Qµν

)
+ S̃µν
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3+1 decomposition of Einstein equations

FoliateM with a set of spacelike 3-D
hypersurfaces Σt , parametrised by t .

Decompose the trajectories of t into
components normal and parallel to Σt

tµ = αnµ + βµ

α is called the “lapse”, and fixes the distance between successive
slices.

βµ is the “shift”, and defines how coordinates move within the slice.

These quantities are entirely gauge, ie. can be freely chosen, do not
influence the physics.

3+1 line element:

ds2 = −α2dt2 + γij (dx i + β idt)(dx j + β jdt).
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3+1 decomposition of Einstein equations

The choice of normal nα naturally induces a metric on each slice
via:

γαβ = gαβ + nαnβ

The mixed form of γαβ projects tensors onto the spacelike
hypersurfaces:

⊥α β = δαβ + nαnβ

Associated compatible covariant derivative in slices

Dα :=⊥µ α∇µ,

Dαγβγ = 0.

The extrinsic curvature (describing the embedding of Σ inM) is
given by:

Kαβ = − ⊥α µ ⊥β ν∇(µnν) = −1
2
Lnγαβ
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3+1 decomposition of Einstein equations

The 4D Einstein equations can be written out explicitly in terms of
derivatives of the spatial metric and the extrinsic curvature.
Evolution equations (6+6):

(∂t − Lβ)γab = −2αKab

(∂t − Lβ)Kab = −∇a∇bα + α(Rab + KKab − 2KaiK i
b)

Constraints (1+3):
H = R + K 2 − KijK ij = 0 (hamiltonian)
Ma = ∇i (Kai − γaiK ) = 0 (momentum)

Cauchy problem for the ADM formulation of Einstein’s equations:
Prescribe {γab,Kab} at t = 0 subject to the constraints,
Specify coordinates via α and βa,
Evolve data to future using Einstein eqs and definition of Kab.
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Evolution equations: “BSSN” Formulation

(Kojima, Nakamura, Oohara 1987, Shibata, Nakamura 1995, Baumgarte, Shapiro 1999)

Key idea: Reformulate ADM by changing variables according to certain
geometrical and stability criteria.

1. Conformally decompose the 3-metric:

γ̃ab = e−4φγab

Introduce the conformal factor as an evolution variable, and subject to the
algebraic constraint det γ̃ab = 1

2. Evolve the trace of the extrinsic curvature as a separate variable.

φ =
1
4

logψ

K = γ ijKij

γ̃ab = e−4φγab

Ãab = e−4φ(Kab −
1
3
γabK )

3. Introduce evolution variables (gauge source functions):

Γ̃a = γ̃ ij Γ̃a
ij = −∂i γ̃

ai
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Initial data for binary black holes

Misner data:
Two isometric, time symmetric, conformally flat, sheets
connected by N black holes, solved as infinite series
expansion.
Brill-Lindquist:
Conformally flat, time symmetric, hamiltonian constraint
solved by: ψ = 1 + ΣN

i=1
mi

2ri
.

Puncture:
Assume a conformal factor of the form:

ψ = u + ΣN
i=1

mi

2ri
.

Find C2 solutions for u of the hamiltonian constraint:

∇̃2u +
1
8
χ7Ãij Ãij (1 + χu)−7 = 0
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