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The binary black hole problem

> Radiation-reaction (the emission of gravitational waves) causes the
orbits to shrink.
o At large separation, eccentricity decays at a faster rate than the
orbit decay:
o The late inspiral is expected to be quasi-circular for astrophysical
models.
o After merger, a single distorted black hole is formed
> Perturbations decay exponentially followed by a power-law tail
> Quasi-normal mode ringing.
o Result: A waveform with gradually increasing frequency and
amplitude, followed by a sharp cutoff after merger:
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The binary black hole problem

post—newtonian fully nonlinear perturbative
inspiral plunge ringdown

o Qualitative features of the merger “chirp” waveform are known.
> Different approximations are appropriate in different regimes:

. Post-Newtonian at large separations.
> Numerical simulation for the last orbits and merger.
o Perturbative techniques for the ringdown.
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Numerical relativity

> We are interested to accurately determine the gravitational wave
content and physical properties of spacetimes which are:

Strong.
Dynamical.
Without symmetries.
2 In the strong-field, dynamical regime, nonlinear terms of the Einstein
equation play an important role — approximations break down.
> We resort to numerical computation (computer simulation) to
determine solutions of the Einstein equations:

1
Raﬁ — Ega'BR = 871’Tag

For the purpose of this talk, we consider only vacuum solutions, ie.
Tas = 0.
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341 decomposition of Einstein equations

» Foliate M with a set of spacelike 3-D =
hypersurfaces ¥ ;, parametrised by t.

x<

» Decompose the trajectories of t into =0
components normal and parallel to X;

t' = an* + p*
« is called the “lapse”, and fixes the distance between successive
slices.

(B is the “shift”, and defines how coordinates move within the slice.

o These quantities are entirely gauge, ie. can be freely chosen, do not
influence the physics.

2 3+1 line element:
ds? = —a?dt? + v;i(dx' + ' dt)(dx + F dt).
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341 decomposition of Einstein equations

> The choice of normal n® naturally induces a metric on each slice via:
YoB = 8apB 1+ NaNp

> The mixed form of v,3 projects tensors onto the spacelike
hypersurfaces:
1« 8= 5ag =+ no‘ng
o Associated compatible covariant derivative in slices
Dy :=1* \V,,
Do/yg7 =0.

o The extrinsic curvature (describing the embedding of X in M) is
given by: 1

Kep == La ® 1g ”V(uny) = —E,Cn’yag G
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341 decomposition of Einstein equations

o The 4D Einstein equations can be written out explicitly in terms of
derivatives of the spatial metric and the extrinsic curvature.
Evolution equations (6+6):

(at - LB)'Yab = —2aKp
(0 — L5)Kab = —VaVpa + a(Rap + KKap — 2K, K'p)

Constraints (1+3):
H=R+ K> — KKl = (hamiltonian)
M, =V'(Ksi —7.iK) =0 (momentum)

> Cauchy problem for the ADM formulation of Einstein’s equations:
Prescribe {7.», Kap} at t = 0 subject to the constraints,
Specify coordinates via « and 32,
Evolve data to future using Einstein eqs and definition of K_p.
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Reduction to explicitly hyperbolic form

Expanding
Rap =0,

we get a PDE whose principle part contains mixed 2nd-derivatives of
the metric:

2

Harmonic gauge: Mixed 2nd derivatives can be removed by
introducing the new variables —g? ; = ? (DeDonder 1921,
Choquet-Bruhat 1952):

1 Lo i
_EDgab — = e — e ) (rkairjkb = rkabrijk) =0.

Ogab = 28i(a0m) ™ + 2T T apyi + 287 (2T aMbyki + T il ki)

The Einstein equations are explicitly in the form of a 2nd order wave
equation for the metric.

Hyperbolicity, and thus stability, follows directly from the reduction

to harmonic form. G
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Evolution equations: “BSSN" Formulation

(Kojima, Nakamura, Oochara 1987, Shib Nak 1995, B te, Shapiro 1999)

Key idea: Reformulate ADM by changing variables according to certain
geometrical and stability criteria.

1. Conformally decompose the 3-metric:
’?ab — e'_‘l(ﬁ’)"ab

Introduce the conformal factor as an evolution variable, and subject to
the algebraic constraint detd,, = 1

2. Evolve the trace of the extrinsic curvature as a separate variable.

¢= %logw Fab = € Yap

. ~ _ 1
, — e MK, &

K=+"K;  Aw=e""(Kap — 37aK)
3. Introduce evolution variables (gauge source functions):

e =502 = —5;5° G
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BSSN evolution equations

> Evolution equations:
(at + ﬁﬁ)ﬁ/ab == 2O"aab

(Oc + Lp)p = — %aK¢
(O + L5)Ap = *?(DaDpar + aR,p) T + a(KA,, — 2A,;ATL)
(@ + L5)K = — DD + a(Az AV + %;@)
ocf® =10,036° + S5O0y + FIOT* — Fioype + S0y
— 2A% 9, + 202 AT 4 6A% 8¢ — gaa"a,-K)

o Constraints:
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Coordinate conditions

There are a number of features we'd like to see in a good choice of
coordinates:
> Cover regions of spacetime of interest
Simplify equations of motion

eliminate evolution variables
recast equations into nice form (eg. harmonic coords)

> Simplify the physics (eg. reduce dynamics on the numerical grid)

minimal distortion (Smarr-York 1978), “symmetry seeking”
(Garfinkle-Gundlach 1999)

co-rotating coordinates

known asymptotic states

> Avoid physical singularities
Computationally efficient

Compatible with hyperbolicity, well-posedness
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Coordinate conditions

o The Bona-Massé slicing conditions have become generic for
BSSN-type evolutions.

(0 — fO))a = —a*f(a)K

with f(a) > 0.
o f = 0: Geodesic slicing
o f — oo: Maximal slicing
o f = 1: Harmonic slicing
o f=2/a: “1+ log” slicing . *

o They are evolution equations —
inexpensive to compute. p \ i/ Y

o In particular, the 1 + log variant 7 \\
has excellent and well N N ’
understood singularity avoiding
properties [Hannam et al. 2006].
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Initial data for binary black holes

Misner data:
Two isometric, time symmetric, conformally flat, sheets
connected by N black holes, solved as infinite series

expansion.
Brill-Lindquist:
Conformally flat, time symmetric, hamiltonian constraint
: N mi
solved by: p=1+3%N, P
Puncture:
Assume a conformal factor of the form:
m;
p=u+3IV

Find C2 solutions for u of the hamlltonlan constraint:

. | S
Viu + §X7A,-jA”(1 +xu)"")=0
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Discretisation of the Einstein Equations

The evolution of the field variables is carried out using a method of
lines technique:
Time evolution is carried out using standard ODE techniques, such
as Runge-Kutta.

The evolution equations consists of any suitable spatial discretisation
of the RHS of the field equations.
Eg: Finite differences. Spectral methods. Finite elements.

For the results in this talk we use finite differencing:

Exact in the limit of infinite resolution.

o
o

Higher order methods converge more quickly with
resolution, require larger stencils.

i
S

For efficiency, resolution is concentrated in the
strong field regions — “Adaptive Mesh Refinement”
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Wave extraction

It has become standard to measure  0.005
waves as expansions of the .
Newman-Penrose W, scalar.

An independent method measures
gage-invariant perturbations of a E
Schwarzschild black hole. 0.005 [

‘Observers’ are placed on a 2-sphere a;
some large radius.

\

TTT T,

Measure odd-parity (Q,;,) and =000 r0
even-parity (Q; ) perturbations of the e
background metric. t (M)
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Cactus

o BSSN 1st order in space, 2nd order in time
o 1+log lapse, -driver shift evolution
(0r — B'0;)a = —2aK
B = ko g (k>0)

» Carpet Adaptive Mesh Refinement follows Puncture movement
> Apparent Horizon Finder and Isolated Horizons

> Wave Extraction both with Zerrilli Extraction and the Newman
Penrose W,

o Puncture initial data with PN derived orbital parameters
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BH Astrophysics with Numerical Relativity

There are a number of interesting physics results available from
studying the last orbits, plunge and ringdown.

State of the final BH from generic initial data
Recoil of the final BH
Mode decomposition of the plunge waveform.

These results are easily accessible, given reasonable
quasi-circular/PN orbit parameters at late times.

In a series of papers, we have studied the merger physics of binary-BHs
with spins:

Koppitz et al. “Recoil Velocities from Equal-Mass Binary-Black-Hole Mergers”’, PRL 99,
041102 (2007).

Pollney et al. “Recoil velocities from equal-mass binary black-hole mergers: a systematic
investigation of spin-orbit aligned configurations”,

Rezzolla et al., “Spin Diagrams for Equal-Mass Black-Hole Binaries with Aligned Spins”,
Rezzolla et al., “The final spin from the coalescence of aligned-spin black-hole binaries”,

Rezzolla et al., “On the final spin from the coalescence of two black holes”,

Jennifer Seiler jese@aei.mpg.de BBH Final Spin Formula



Intro Implementation Physics Conclusions Kicks Spins

Kicks from binary black hole mergers

For an equal-mass, non-spinning binary merger, the remnant will be
a stationary, spinning black hole.

If an asymmetry in the bodies is present, the emitted in gravitational
waves will also have asymmetry.

As a result, the remnant black hole will have momentum relative to
distant stationary observers, called a recoil or kick.

Asymmetries in the emitted gravitational wave energy are a result of:

Unequal masses.
Unequal spin magnitudes.
Spins which are misaligned with each other or the orbital angular
momentum.
The recoil velocity has large implications for simulations of stellar
clusters and galaxies.
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Black hole kicks

The recoil results from couplings of various wave modes, which are
integrated over the entire inspiral time.

Fi= P _—/dQn, (i +#2)
It is only in the last 1-2 orbits before merger that the recoil becomes
significant.
|Psi4|t2 o »d.. sphere
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Black hole kicks

o The first numerical calculations for unequal mass systems [Goddard,
Penn State, Jena] provided a strong validation of earlier analytical
estimate due to [Fitchett 83].

2 Soon after, it was determined that much higher kick velocities are
obtainable when spins are unequal [Penn State, AEl, UTB].

> In the anti-aligned case, a maximum recoil of: |v|iick = 448 £ 5km/s
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[Gonzalez et al. 2006] [Pollney et al. 2007]
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Recoil velocities from spinning BHs

PN (2.5) suggests a linear increase of recoil with spin ratio:

2 2
q (1—-gq) 2q° (1 —qga/a) _ a
Vkick = + o =Ga |1-—
R FEE i+ ap X
:JE‘ T T T T \:
In fact, the numerical data points toa 2} sl e s
. b 3] ]
quadratic dependence: ot R
31,5 Ewof e
|V|kick = a2(c1 — C2( ) + c3(— )2) S : ]
2" Juof o
. . W, ]
> The maximum recoil for the e o . b
anti-aligned case: S ¢
o [ | e
-1 -0.5 0 0.5 1
|V|kick = 448j:5km/s a/2
Excellent agreement with other -
published numrel data.
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Recoil velocities

o The recoil velocity of the final BH can be fit to a quadratic function
of the initial BH spins (a1, a):

ufkick}

[Videx| = |c1(ar — a2) + c2(af — a3)] .
c = —220.97£0.78, c» = 45.52+2.99

Zero kick when a; = a» Linear scaling along a; = —a»
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Black Hole Spins

The objective of this talk is to derive a L orbital angular mom.
phenomenological formula for spin of a black hole
resulting from the merger of two black holes of S1 =

arbitrarily oriented spins and generic mass ratio < -

This has applications for: 4 ﬁ
statistical distibution of black hole properties
simulations of the central regions of galaxies
dynamics of star clusters

We need to simulate 2 spinning black holes over a 7D Merger

parameter space

{5{, 52'7 Ml/MZ}
to get one final black hole ; i

{Vliick}{s;-in/Mﬁn}
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We obtain a general 2nd order polynomial expansion with 5
restricting assumptions for our coefficients:

mass radiated in graviational waves may be neglected, Mg, ~ M:
Myag/M =1 — Mg, /M ~ 5 — 7x10>

magnitude of the final spin vector is the sum of the initial spin

vectors flus a thrid vector, £:

o~

Sin=S51+S+7

the vector £ is the difference between the orbital angular L
momentum when the binary is widely separated L, and the

angular momentum radiated up to the merger £ = L — Jiaq.- J

The vector Z is parallel to L (correct by equatorial symmetry for rad
spins aligned with L) with a resulting error in the estimate of

~ |JE4 2 /1% ~ | J5al?/(2v/3 My Ms)? these errors are small in

all the configurations that we have analysed

When the initial spin vectors are equal and opposite (51 = —S)

and the masses are equal (g = 1), the spin of the final black

hole is the same as for the nonspinning binaries

The extreme mass ratio limit (EMRL) is trivial

Stin = S1 if M—0
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Black Hole Spins

Using these assumptions, it follows that:

1
lagn| = ——— ||a1|* + |a2]?q* + 2|az||a1|q® cos o+
(1+4q)?

1/2
2 (ar] cos B + |azl? cos) [€lq + 2]

where cosa = 3; - 35 ,cos 3 = 5; f,cos'y =2 4.
In order to obtain |¢| we need to match this equation against
general second order polynomial expansions for:
Equal mass, unequal but aligned spin binaries
> Unequal mass, equal spin binaries

— S4
S (1+ 22
Ssv + to + 2

( 1+¢q?

1| (la1]* + |22 q* + 2|ar || 22| ¢* cos @) +

) (|a1| cos B + |a2|g” cos ) +
2\/§+ tv + t3l/2 .

Numerical simulations to obtain s, ss, to, t2, t3.
Test against generic misaligned spin binaries.
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Final spin via horizon shape

> Valid once a common horizon has formed and settled down to a
perturbed state.

> Measure equatorial circumference C. and polar circumference C,
along orthogonal great circles.

o G = G,/ C, settles to a constant value:

N v e 72
CU)=—" E<(1+M)2>

where j = a/M, and E(k) is the complete elliptic integral of the

second kind .
E(k) = / V1 — ksin? 0d6.
0

This equation is integrated numerically to obtain j from the horizon
shape.
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Parameter studies with spinning black holes

Aligned spin leads to an orbital hangup.
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Equal Mass, Aligned Unequal Spin Binaries

2 We have carried out studies in the parameter space of equal-mass aligned
spin binaries, starting from non-eccentric orbit.

» Vary the spin of each BH from a = —0.6 to a = +0.6.

2 Initial studies determined final BH parameters (final spin, radiated energy,
kick) as a function of binary parameters.

» Kick depends quadratically on the spin difference, up to ~ 450km/s in the
maximal case.

2 Final spin is an almost linear function of the initial spins.

LT
I © 0000000 1
05 - B
00000 ¢ ¢ o
& 0fF or—seq. |
era—seq.
F 4 s—seq.
~05 B
* u—seq. .
[ N A B R :
-1 -0.5 0 0.5 1 ﬁ
& Spin of the final BH.
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Aligned Unequal Spins, Equal Mass

The resulting expression is:
agn = po + p1(ar + a2) + pa(ay + a2)° .
with

po = 0.6883£0.0003, p; = 0.15300.0004, p, = —0.0088 £ 0.0005,

\/§ ts 3 1 S5 to Sq
=2 T e PT2TRTE P
.
7 o predicts a minimum and maximum
i spin:
» (aﬁn)min ~ 0.347
< “‘V““ g (afin) max ~ 0.959
: : = for alligned spins.
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Unequal Mass, Aligned Spins

» The spin of the final black hole has been determined for very generic
initial conditions:
Arbitrary aligned spins
Unequal masses
) In the extreme-mass-ratio limit, approximation methods can be used.

agn, = a+ 5432u 4= s;,au2 + tpav + 2V3v + t21/2 4= t3u3

s2 = —0.129 £ 0.012
ss = —0.384 & 0.261
to = —2.686 + 0.065
ty = —3.454 4 0.132
t; = 2.353 £ 0.548
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Accuracy for Aligned spins
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> Numerical relativity results for non-spinning BHs (Jena, Goddard, Penn

State)

. Extreme mass ratio calculations for the m; > m» limit

(Buonanno-Kidder-Lehner 2007)
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Aligned spinning
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Summary

Binary black holes are a fertile ground for gravitational physics
(recoil, spin, waveforms).
Modellinog of final spins and kicks within ia few percent precision
Hybrid methods, combining post-Newtonian and perturbative
approaches with numerical results are starting to provide a picture of
the full inspiral-merger process.

Techniques for numerical relativity are now rather advanced. There
are still systematic problems to be tackled:

Efficiency.
Improving initial data construction.
Understanding limitations of wave extraction at a finite radius.

Room for improvement by including J,4 in the orbital plane
Interesting to see what we can discover about extremal spin regions
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Thank You.
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Discrete Boundary Treatment for the Shifted Wave Equation in Second Order
Form and Related Problems.

Problems Which are Well-Posed in a Generalised Sense With Applications to the
Einstein Equations.

Well Posed Constraint-preserving Boundary Conditions For the Linearized
Einstein Equations.
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