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Abstract

With ground-based gravitational wave detectors at design sensitivity, and a space-
based detector in planning stages, the need for accurate gravitational wave templates for
signal recognition by detector pipelines has become an urgent problem. With that in mind,
and the fact that binary black hole inspirals and mergers arethe strongest potential source
for gravitational wave signals for online detectors, my research has focused on improving
the accuracy and well-posedness of numerical simulations,and on the generation of grav-
itational waveforms from numerical simulations both for detector template generation and
for astrophysical predictions.

For simulations of highly dynamical relativistic vacuum space-times I derived accu-
rate and well-posed formulations of the Einstein equationsfor numerical evolutions. I
herein propose a set of well-posed, constraint-preservingboundary conditions for artifi-
cial boundaries for a first order in time and second order in space ‘generalized harmonic’
formulation of the Einstein equations. I tested these conditions both for black hole space-
times and for a series of robust stability tests, and show that these conditions reduce noise,
reduce constraint violation, and increase stability for relativistic simulations. Addition-
ally, I propose novel, well-posed, constraint-preservingboundary conditions for the more
commonly used BSSN evolution system for standard “1 + log” and Gamma-driver gauge
conditions.

I carried out numerical evolutions of symmetric and asymmetric binary black hole
mergers in large numbers to explore the parameter space of binary black hole inspirals and
derive a statistical and phenomenological view of the physical qualities of binary merger
remnants. I ran binary black hole inspiral simulations using both quasi-circular and post-
Newtonian derived initial orbital binary inspiral parameters, and “puncture” initial data,
and extracted physics from a number of initial data sequences in order to establish bounds
on phenomenological formulae for the final spin and recoil velocity of merged black holes
from arbitrary initial data parameters.

With the data from those parameter studies we focus on gravitational-wave emission
to quantify how much spin effects contribute to the signal-to-noise ratio and to the relative
event rates for the representative ranges in masses and detectors. I show that equal-spin
binaries with maximum spin aligned with the orbital angularmomentum are more than
“three times as loud” as the corresponding binaries with anti-aligned spins. Finally, we
derive a simple expression for the energy radiated in gravitational waves and find that the
binaries have efficienciesErad/M between3.6% and10%.

Finally, I present an analytical inspiral-merger-ringdown gravitational waveforms
from black-hole (BH) binaries with non-precessing spins bymatching a post-Newtonian
description of the inspiral to our numerical calculations,we obtain a waveform family
with a conveniently small number of physical parameters. These waveforms will allow
us to detect a larger parameter space of BH binary coalescence, to explore various sci-
entific questions related to GW astronomy, and could dramatically improve the expected
detection rates of GW detectors.

Keywords: boundary conditions, binary black holes, numerical relativity
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Zusammenfassung

Da heutige erdgebundene Gravitationswellendetektoren ihre Designsensitivität erre-
icht haben und weltraumgestützte Detektoren in der Planungsphase sind, ist es notwendig,
genaue Gravitationswellenschablonen zwecks Signalerkennung in den Detektor-Pipelines
zur Verfügung zu haben. Mit dieser Problemstellung im Hinterkopf, und der Tatsache,
daß binäre Schwarzlochverschmelzungsprozesse potentiell die stärksten Quellen gravi-
tativer Strahlung für derzeit operierende Detektoren darstellt, hat sich meine Forschung
dadrauf konzentriert, die Genauigkeit und korrekte Stellung numerischer Simulationen zu
verbessern, sowie gravitative Wellenformen durch numerische Simulationen für Detek-
torschablonenerzeugung und astrophysikalische Vorhersagen zu berechnen.

Für Simulationen hochdynamischer, relativistischer Vakuumraumzeiten habe ich
genaue und korrekt gestellte Formulierungen der Einsteingleichungen für numerische
Evolutionen hergeleitet. Hierbei entwerfe ich einen Satz korrekt gestellter, zwangs-
bedingungserfüllender Randbedingungen für künstliche Ränder und für eine “general-
isierte harmonische” Formulierung der Einsteingleichungen erster Ordnung in der Zeit
und zweiter Ordung im Raum. Verschiedene Tests an Schwarzlochraumzeiten und Sta-
bilitätstests zeigen, daß diese Bedingungen numerisches Rauschen und Verletzungen der
Zwangsbedingungen reduzieren, sowie die Stabilität erhöhen. Desweiteren entwickele ich
neue korrekt gestellte, zwangbedingungserfüllende Randbedingungen für das weitverbre-
itete BSSN Evolutionssystem mit der “1+log” Gamma-TreiberEichbedingung.

Ich habe eine große Anzahl numerischer Evolutionen symmetrischer und asym-
metrischer Schwarzlochverschmelzungen durchgeführt, umden Parameterraum zu un-
tersuchen, und um eine statistische und phänomenologischeAnsicht physikalischer
Größen des verschmolzenen schwarzen Loches zu erhalten. Ich habe Simulationen
von Binärsystemen mit quasi-zirkulären und post-Newtonisch abgeleiteten orbitalen
Punktions-Anfangsparametern durchgeführt, und habe phänomenologische Formeln für
den finalen Spin und Rückstoß des verschmolzenen schwarzen Loches für beliebige An-
fangsdaten bestimmt.

Desweiteren habe ich mich mit den Daten dieser Parameterstudien auf deren grav-
itative Wellenemission konzentriert, um den Effekt von Spin auf das Signal-zu-Rausch
Verhältnis und relativen Ereignisraten für verschiedene Massen und Detektoren zu bes-
timmen. Ich zeige, daß Binärsysteme mit gleichem und maximal ausgerichteten Spin
mehr als dreimal “lauter” sind, als entsprechende Systeme mit anti-ausgerichtetem Spin.
Zudem leite ich einen einfachen Ausdruck für die abgestrahlte Energie in Gravitation-
swellen her, und zeige, daß eine Effizienz zwischen3.6% und 10% in Erad/M erreicht
werden kann.

Zuletzt präsentiere ich eine Familie analytischer und vollständiger Wellenformen für
Binärsysteme mit nicht-präzedierendem Spin, die mit einemhinreichend kleinen Satz
an freien physikalischen Parametern auskommt. Um dies zu erreichen, habe ich post-
Newtonische Wellenformen an numerisch berechnete angepasst. Diese Wellenformen
werden es ermöglichen, einen großen Bereich des Schwarzloch-Parameterraums aufzus-
pühren, verschiedene Aspekte der Gravitationswellenastronomie zu beantworten, und die
Detektionsraten erheblich zu verbessern.

Schlagworte: Randbedingungen, Schwarzlochverschmelzungen, Numerisches Relitivität
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Chapter 1

Introduction

Every time we walk along a beach some ancient urge disturbs usso that we
find ourselves shedding shoes and garments or scavenging among seaweed
and whitened timbers like the homesick refugees of a long war. . . Mostly
the animals understand their roles, but man, by comparison,seems troubled
by a message that, it is often said, he cannot quite remember or has gotten
wrong . . . Bereft of instinct, he must search continually formeanings . . .
Man was a reader before he became a writer, a reader of what Coleridge
once called the mighty alphabet of the universe.

Loren Eiseley

In 1915 Einstein’s theory of general relativity proposed that the geometry of spacetime
could be as dynamic and informative as the electromagnetic universe. He proposed that
matter and energy define the structure of the surrounding spacetime, and that that struc-
ture, in turn, effects the motion of the bodies within it. Theobjective of all work accom-
plished here is for the improvement of computational modelsand modeling techniques
for general relativistic simulations. These simulations are relevant for the prediction of
gravitational wave (GW) signals to be used for the improvement of GW signal detection
rates and accuracy of parameter estimation by gravitational wave observatories. The use
of such numerically generated signals is essential for suchobservatories to be able to dis-
tinguish GW signals, and such observations would provide anentirely new spectrum of
observation for understanding the dynamics of our Universe.

Optical, radio, and x-ray astronomy have provided us with abundant evidence that
many galaxies contain massive black holes in their central nuclei. These nuclear black
holes have a profound effect on the formation, dynamics, andentire history of the sur-
rounding galaxy. There is some evidence that the formation of such black hole popula-
tions can be described by a multistage process of binary inspiral, merger, and accretion.
Thus, the detection and analysis of gravitational waves produced by such events would
be the first detailed description and the first direct evidence of such processes, and would
give new insight into the formation of all galaxies– our own included.

The measurement and understanding of gravitational waves is an entirely new regime

1
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of astronomical observation. Studying this new regime willconvey new information about
the behavior, structure, and history of spacetime, as well as being one of the fist direct non-
local tests of our theories with regard the physical force ofgravity and the dynamics of
the fabric of spacetime.

This dissertation is concerned with the derivation and implementation of a well-posed
numerical treatment of the Einstein equations for general relativity in full 3+1 dimensions
on a finite discrete domain of evolution. I will discuss the use of these codes for the evo-
lution of binary black hole (BBH) spacetimes and the exploration of the parameter space
for such constructions. I will also discuss the extraction of relevant physical information
(such as gravitational waves, spins, and recoil velocities) from those simulations, and the
analysis of those results for use in gravitational wave detection and in generating astro-
physical predictions for the behaviour of merged black holes binaries. Much of the work
discussed herein has been collaborative work with other researchers at the Max-Planck
Institute for gravitational physics. Collaborators will be credited in the relevant chapters.

I will first spend the next chapter introducing the background, motivations, and com-
putational and mathematical methods required for the generation of numerical relativity
simulations and analysis. My thesis covers almost a global scope of the stages required
to generate a well-posed numerical simulation and of the analysis of the resultant data
required to provide useful information to gravitational wave (GW) and astrophysics com-
munities:

• In Chapter [2] I describe the physics, mathematics, and computational methods
and background required to understand the simulations and research done for this
thesis. I start by explaining the decomposition of the Einstein equations for use in
numerical simulations, follow with the derivation and application of initial data for
such simulations, and then discuss the numerical methods required to evolve said
data forward in time. I explain the different methods used toextract gravitational
waveforms and black horizon properties. I explain how we prove numerical and
physical accuracy and stability for our simulations, and follow with a discussion of
the specific qualities of the codes used in this these.

• In Chapter [3] I describe the derivation, implementation and testing of two new
kinds of boundary conditions for two different kinds of evolution systems common
in numerical relativity. These new methods are designed to improve the numerical
and physical accuracy and stability of numerical simulations with truncated evolu-
tion domains by artificial outer boundaries. I prove their well-posedness, accuracy
and stability and show a series of tests showing this improved performance against
standard methods for the Harmonic formulation of the Einstein Equations, and de-
rive constraint preserving conditions for the BSSN system whcih are well-posed in
theconformally flat constant coeeficient limit.

• In Chapter [4] I characterize phenomenological formulae for the prediction of the
final spin and recoil velocity of merged binary black holes from arbitrary initial
parameters derived from data extracted from our numerical simulations. This work
is the result of the fitting physical knowledge and assumptions to data obtained
from an extensive study of the parameter space of black hole binaries by sequences
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of numerical simulations performed on a variety of initial data parameters. Quite
surprisingly, these relations highlight a nonlinear behavior, not predicted by the PN
estimates, and can be readily employed in astrophysical studies on the evolution of
binary black holes in massive galaxies.

• In Chapter [5] I will discuss the uses of gravitational waveforms extracted from nu-
merical simulations for use in gravitational wave detectordata analysis pipelines.
Using the previous chapter’s parameter studies I explore how much spin effects
contribute to the signal-to-noise ratio and to event rates for a representative range
of masses and detectors. I also present an analytical inspiral-merger-ringdown grav-
itational waveform for black hole binaries with non-precessing spins by matching
a post-Newtonian description of the inspiral to numerical calculations to obtain a
generic waveform with a conveniently small number of parameters.

I follow with a discussion of the outlook for the numerical methods discussed and the
potential extensions of the work discussed. I will concludewith a summary of the work
done in this thesis and an analysis of the results shown followed by Appendices to discuss
technical details which do not suit the main body of the text.
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Chapter 2

Background

We do not know the past in chronological sequence. It may be convenient to
lay it out anesthetized on the table with dates pasted on hereand there, but
what we know we know by ripples and spirals eddying out from usand from
our own time.

Ezra Pound

The simulation of general relativistic spacetimes requires the explanation of back-
ground for both the physics motivations, experimental objectives, theoretical and mathe-
matical challenges, and numerical/computational requirements, as well as the details of
implementation used for the research in this thesis. The research in this thesis deals with
both the details of the mathematical and computational methods employed to make nu-
merical simulation of the Einstein equations possible, themethods for the extraction of
physical information from simulation data, as well as the use of results of such simu-
lations for astrophysical predictions, for the productionof waveforms for use in gravita-
tional wave detector pipelines, and to establish the detectability and accuracy of parameter
estimation of gravitational waveforms by said detectors. Thus I need to give background
of both astrophysical and computational nature in order to explain the results described in
the later chapters.

In this section I will try to highlight the most important foundations of the methods
and results described in this thesis. I will first explain physical theory and the relevance of
gravitational waves in general relativity, astrophysics,and cosmology. I will explain why
numerical relativity is necessary to describe and predict the gravitational waves resultant
from massive astrophysical events. I will then follow with adescription of the steps
necessary for the creation of a numerical relativity simulation and a description of the
methods and code used for the simulations in this thesis. This requires an elaboration of
the decomposition of the Einstein equations, the choice of coordinates, the methods for
choosing initial data, and the numerical methods employed to discretize space and time
and integrate on those discrete grids. I will then explain how gravitational waveforms
and black hole horizon data is obtained from simulations, and how we prove physical
accuracy. I then explain the importance of boundary conditions, and discuss the details of

5
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Figure 2.1: The effect of gravitational waves on a ring of particles. Thewave propaga-
tion is perpendicular to the ring. The top row shows the effect of the wave
+ polarized, while the bottom row shows the effect of× polarization.

the codes used for this research. I will conclude the chapterwith an outline of the thesis,
which should make clear how the background given herein supports the material of the
thesis to follow.

2.1 General Relativity and Gravitational Waves

Einstein’s theory of gravitation, general relativity (GR), asserts that gravity is the result of
curvature in spacetime. This curvature is determined by thematter and energy distribution
in that spacetime. This coaction between matter and curvature is described by the Einstein
Equations:

Gµν = 8πTµν (2.1)

This equation gives ten nonlinear partial differential equations (PDE) to describe the full 4
dimensional spacetime metric and matter fields. WhereGµν represents the Einstein tensor
andTµν is the stress energy tensor for the matter in the spacetime. In this dissertation I
will discuss only black hole, and perturbed black hole spacetimes. Thus we limit our
focus to the general relativistic prediction for systems containing only black holes. We
can then set the matter term,Tµν , to be everywhere zero. In other words, we treat here
only vacuum problems. However, many of the methods derived here (ICN and boundary
conditions) may be applied to matter problems, as well.

Even with this vacuum simplification, however, few analytical solutions are known to

Gµν = Rµν −
1

2
gµνR = 0 (2.2)

for realistic astrophysical spacetimes. HereRµν is the Ricci curvature tensor,R is the
scalar curvature, andgµν is the metric tensor for our spacetime of interest.

Einstein’s motives for developing GR were mainly theoretical. At the time there were
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no strong observational reasons to abandon Newtonian gravity. Still, today, evidence of
some predictions of GR have only been observed indirectly. Therefore, the study of weak
gravitational fields is an extremely important test of Einstein’s theory. In such a weak
field regime we may say that such a region corresponds to a nearly flat spacetime. Thus,
we may say that such a spacetime has coordinates such that themetric tensor is defined as
some finite deviation from Minkowski spacetime

gµν = ηνµ + hνµ , |hνµ| ≪ 1. (2.3)

Working as if we have this flat spacetime with a tensor fieldhµν we can derive linearized
filed equations in GR

∂α∂(µh̄ν)α − 1

2

(
∂α∂

αh̄µν + ηµν∂
α∂β h̄αβ

)
= 8πTµν , (2.4)

whereh̄µν = hµν − 1
2ηµνh andh = ηµνhµν If we make a gauge transformation to the

Lorentz gauge we may simplify the field equations to�h̄µν = 16πTµν , where� :=
gµν∇µ∇ν is the flat space d’Alembertian operator. In flat vacuum spacetime we obtain

�h̄µν = (−∂2
t + ∇2)h̄µν = 0. (2.5)

This gives us a wave equation for a spacetime perturbation propagating at the speed of
light transverse to the direction of propagation. Thus, theEinstein field equations tell
us that if masses accelerate asymmetrically around in a spacetime, the curvature of that
spacetime will warp to reflect the motions of those objects.

In the same way that electromagnetic radiation accompaniesacceleration of electric
charges, gravitational radiation accompanies quadrupolar acceleration of any massive ob-
jects. In highly dynamical spacetimes, cross-polarized transverse quadrupolar ripples in
spacetime will radiate out longitudinally from this system, giving a metric perturbation

hij = h+(e+)ij − h×(e×)ij (2.6)

for the spatial part wheree+,× are basis tensors in the transverse traceless (TT) gauge.
These ripples are gravitational waves.

The strongest gravitational waves are generated by accelerating systems with the
largest gravitational fields,GM/R. Potential sources of strong gravitational waves are
binary systems of massive compact objects such as black holes or neutron stars. The
orbital motion of the two massive objects in a quasi-Keplerian orbit will produce gravi-
tational waves. These gravitational waves propagate outward at the speed of light and a
distant observer will see that the distances between objects will oscillate as these waves
pass. Any gravitational waves seen from earth will never be much more than a fractional
change in size (h) of 1 in 10−20, if the predictions of general relativity are accurate. Cur-
rently there are many ground based detectors online which are designed to detect such
passing gravitational waves (LIGO, VIRGO, TAMA, GEO). The detection of gravita-
tional waves by these detectors can provide a view into regions of the universe that other
observational techniques cannot. These are the first observatories that would observe the
Universe with a spectrum other than the electromagnetic. Additionally, the detection of
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gravitational waves could potentially give us the first large scale direct confirmation of
general relativity, or it could give us the first evidence that an alternate or modified the-
ory of gravity is necessary. But, of course, any important result from gravitational wave
detection hinges on the ability to correctly distinguish and analyze the detector’s output.

Among the most promising sources for gravitational wave detectors are the inspiral
and merger of compact binaries of black holes and neutron stars. Even for these sources,
the signal strength is likely to be much less than the level ofthe detector noise [16]. Thus,
data analysis techniques are required to extract the signalfrom the noise. One technique
which is used for this purpose ismatched filtering, in which the detector output is cross-
correlated with a catalog of theoretically predicted waveforms. Therefore, chances of
detecting a generic astrophysical signal depend on the size, scope, and accuracy of the
theoretical signal template bank. The success of gravitational wave detectors depends on
accurate theoretical models of compact binary inspirals [17]. The work discussed in this
thesis is a small part of the effort required for the detection, recognition, and analysis of
gravitational waves through the creation of such template waveforms. The main focus of
this thesis will be the generation of waveforms and astrophysical predictions for binary
black hole (BBH) inspirals and mergers.

2.2 Numerical Relativity

Far better an approximate answer to the right question, which is often vague,
than an exact answer to the wrong question, which can always be made pre-
cise.

John W. Tukey

Binary systems of compact objects are potentially some of the most important sources
of gravitational waves. The general Newtonian solution to the binary problem is given by
Keplerian orbits. In general relativity, however, these orbits will decay due to the emission
of gravitational radiation. This decay will lead to the inspiral and eventual merger of the
two objects. Thus the emitted waves contain important astrophysical information about
the dynamics of the system. The entire inspiral and merger ofcompact binaries can be
separated into four different phases:

1. The longest being the initial quasi-equilibriuminspiral phase. In order to predict
the behaviour of astrophysically relevant events in this weak field regime, we can
approximate GR by perturbative methods called post-Newtonian expansions, which
are expansions in terms of the relative speed of the black holes.

2. Those quasi-circular orbits become unstable at the innermost stable circular orbit
(ISCO), where the inspiral enters theplungephase. As we approach the ISCO the
post-Newtonian approximation breaks down. Here a full-GR solution is required,
but as an exact solution is rarely possible, this is where a numerical solution be-
comes relevant.

3. After the plunge, the black holes will merge to become a single distorted black hole.
In this mergerphase, numerical evolutions and phenomenological approximations
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fit to numerical results are the only source of accurate waveforms. This will be the
strongest signal in terms of amplitude.

4. This distorted black hole will ringdown to an equilibriumstate. Thisringdown
stage of a merged black hole can be treated with perturbativemethods for know
quasinormal ringdown frequencies for given black hole spins for Kerr black hole
solutions [18].

Eventually the black hole will approach an equilibrium state, and can be described by
known spacetime formulations from exact solutions. However, in the treatment of strong
dynamical fields, such as close inspiral and merger of two black holes, we need to treat
the full non-linear Einstein equations. Here fully self-consistent numerical relativity (NR)
simulations become essential.

This becomes more and more relevant today as gravitational wave detectors approach
final design sensitivity. The ground-based detectors (LIGO, VIRGO, GEO, TAMA) will
produce a data stream that contains noise. Therefore, accurate knowledge of potential
signal waveforms will be neededa priori in order to successfully identify meaningful
signals in the data stream. However, in order for numerical waveforms to be used for
binary black hole signal detection, detector pipelines require matching against a large
database of template waveforms that cover the full parameter space of binary black hole
attributes– such as spin magnitude and orientation, and binary mass ratio. Numerical sim-
ulations are computationally expensive and time consuming. It thus becomes necessary
to make extrapolations from numerical results and to derivephenomenological formulae
for waveform generation and for predictions for other physical quantities such as the fi-
nal spin and velocity of the merged black hole. I will discusssuch formulae in Chapter
[4]. Finally, I will discuss the use of numerical waveforms fordetector data analysis in
Chapter [5] where I will discuss detectability, signal-to-noise ratio, parameter estimation
for detections and phenomenological waveforms for GW detection templates.

Historically, lacking exact or numerical results from fullgeneral relativity, data anal-
ysis methods for such events had to be developed based on perturbative methods called
post-Newtonian expansions. Before numerical relativity could successfully model the bi-
nary black hole problem the GW detector observational community could not test or tune
such methods with actual or accurate numerical BH merger waveforms. Now, the field of
numerical relativity has finally reached a stage where accurate simulations for a range of
astrophysical situations can be provided to the GW data analysis community, and the chal-
lenges of how to extend the capabilities of numerical relativity simulations have become
more clear.

Until recently, the challenges of vacuum numerical relativity made progress toward
waveform production slow, if not occasionally stagnant. Those problems included the in-
herent difficulty of evolving a singularity in a numericallystable way, finding appropriate
gauge conditions for stable evolution, and the problems of efficiency and accuracy given
limited resolution and limited computational resources. However, beginning with the first
successful orbit of two black holes in a simulation [19], through the first demonstration
of the merger and ringdown [20–23], and finally the discoveryof a robust method for sta-
bly evolving any number of orbits through the merger and ringdown without excising the
black hole within the horizon, stable and accurate numerical simulations are now common
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and rapidly developing, and the field of numerical relativity has become a fast moving and
competitive field just when it has become most urgent for the field of astrophysics. This
thesis builds on this previous work and works to improve the accuracy, efficiency, and
scope of these codes.

After decades of research to develop stable, accurate, functioning, and efficient nu-
merical codes for the evolution of fully general relativistic dynamical spacetimes, the
field of numerical relativity has now reached a stage where itis possible to accurately
simulate a range of astrophysical situations and provide waveforms to the GW data analy-
sis community. In particular, numerical relativists have simulated BH binaries through 15
orbits, merger and ringdown, and simulations have been performed with a variety of initial
configurations, providing important astrophysical information [24]. Numerical relativists
are now able to provide the GW detector community with accurate waveforms, and for a
wide enough spectrum of initial parameter that we can soon provide a phenomenological
formula for generating arbitrary template waveforms for detector pipelines.

The earliest solutions to the Einstein equations were constructed by considering the
Einstein equations in their covariant form [2.1] and by imposing convenient symmetries.
In numerical relativity we think of the Einstein equations as an initial value problem (IVP).
Initial data is specified on a particular slicing of spacetime in a discretised numerical
domain, and then evolution equations are used to move forward to neighboring slices.
Thus obtaining a time evolution of our full three-dimensional slice. In order to obtain
such an evolution one first needs to split up the equations [2.2] in such a way that we
choose three ’spatial’ variables and one ’time’ variable dimension along which we step
forward our evolution. This freedom of coordinate choice isrelated to the fact that general
relativity is a gauge theory. This gauge freedom gives us thefreedom to split our four
dimensional space as we see fit. I will discuss some commonly chosen approaches to this
’3+1’ decomposition in the sections that follow, as well as methods for choosing initial
data, numerical methods required for simulations in vacuumspacetimes, and motivations
for using numerical evolutions.

2.3 Decomposing the Einstein Equations

Divide each difficulty into as many parts as is feasible and necessary to re-
solve it.

Rene Descartes

In other theories of classical physics we are given a spacetime background and our
only task is to determine the time evolution of quantities within that background. As
discussed in the previous two sections, Einstein’s theory of general relativity asserts that
spacetime structure and gravity may be related by describing a metric,gµν , on a mani-
fold, M , where the curvature ofgµν is related to the matter distribution by the Einstein
equations2.1. Written in this form, the Einstein equations are manifestly covariant. That
is, there is no way to distinguish spatial coordinates from atime coordinate. While this
is a natural and sensible form for the equations to take from ageometrical standpoint, for
the sake of gaining a more intuitive view, and for numerical evolutions, it is necessary to
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Figure 2.2: A spacetime diagram illustrating the definition of the lapsefunctionα and
the shift vectorβa.

separate your spatial coordinates from time in order to havea path along which to evolve
some initial data through time. Thus, the first thing that needs to be done is to reformulate
the Einstein equations as aCauchy problem, that is, give a set of initial conditions that
sufficiently determine the future evolution of the system.

Since the Einstein equations give us ten equations and ten independent components
of the four metricgµν , we have the same number of equations as unknowns. Only six of
these ten equations involve second time-derivatives of themetric. The other four equa-
tions, thus, are not evolutions equations. We call these ourconstraint equations. The four
constraint equations appear as a result of the general covariance of the Einstein equations.
This gives us the freedom to apply general coordinate transformations to each of the four
coordinates.

If we consider the Einstein equations as a Cauchy problem, wemay separate our ten
equations into a set of four constraint equations and six evolution equations. If these four
constraint equations are satisfied on some initial hypersurface, then the Bianchi identities

∇νG
µν ≡ 0 (2.7)

guarantee that the evolution equations preserve the constraints on all future spacelike
hypersurfaces during the evolution. This freedom means that the Einstein Equations can
be formulated in several ways that will allow us to evolve thedynamics of any relativistic
simulations. I will discuss some of the most common approaches to this freedom in the
sections which follow.

2.3.1 The ADM decomposition

To make the Einstein equations suitable for numerical treatment, one typically introduces
a foliation of spacetime into three-dimensional hypersurfaces. The most frequently used
approach is to choose the hypersurfaces to be spacelike, which leads to the 3+1 or Cauchy
formulation of general relativity [25, 26]. Here we reformulate the Einstein equations in
such a way that we can describe the time evolution of our metric quantities by foliating
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our spacetime,(M,gij), by a set of 3-dimensional spacelike Cauchy surfaces,Σt, as
parameterized by some time function,t. If we let na be a future-pointing timelike unit
normal vector field to our hypersurface,Σt, we can extract our spatial metric from the
spacetime metric,gij , as a three dimensional Riemannian metric on eachΣt

γij = gij + ninj. (2.8)

We then define a vector field fromt that satisfiesta∇at = 1. We decomposeta into
normal and tangential parts relative toΣt by defining thelapse function, α, and theshift
vector, βi, respectively

α = −tini = (ni∇it)
−1 , (2.9)

βi = γijt
j . (2.10)

Thesegauge functionsdefine how coordinates move forward in time from slice,Σt to
Σt+∆t. Here, the lapse function,α, sets the proper interval as measured by an observer
as we move between hypersurfaces, as illustrated in Figure [2.2], and the shift functionβi
is the relative velocity of Eulerian observers and the linesof constant spatial coordinates.
These four parameters,α andβi, are a manifestation of the gauge freedom in the Einstein
equations. We can now rewrite the interval as

ds2 = −α2dt2 + γij(dx
i + βidt)(dxj + βjdt). (2.11)

Since the Einstein equations are second order, in order to distinguish between the
intrinsic curvature of the internal geometry of a hypersurface and theextrinsiccurvature
associated with the embedding of that hypersurface in the spacetime for. We must then
introduce something like a time derivative of our metric,γij. Thus, we introduce the
extrinsic curvature tensor, Kij , to define a time derivative of our spatial metricγij on our
hypersurfaceΣt

Kij = γca∇cnb = −1

2
Lnγij , (2.12)

whereLn is the Lie derivative with respect tona. This extrinsic curvature tensor describes
the change of the normal vector on our hypersurface under parallel transport, and is a
purely spatial tensor.

The appropriate initial data should, thus, provide definitions for (Σ, γij ,Kij) on a
hypersurface, whereΣ is a three-dimensional manifold,γij is a Riemannian metric, and
Kij is a symmetric tensor field onΣ. That is, the metric,γij, depends on howΣt is
embedded in the full spacetime. We can derive relations between the curvature(3)Rlijk of

Σ and the spacetime curvatureRlijk and obtain

DiK
i
j −DjK

i
i = Rkln

lhkj . (2.13)

These are known as theGauss-Codacci relations. We can now use our notions of an
induced metricγij and extrinsic curvatureKij and these relations in our analysis of the
Einstein equations. Combining these conditions with the vacuum Einstein equations, we
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obtain

∂tKij = α
[
R̄ij − 2KilK

l
j +KKij

]
− ∇̄i∇̄jα

+βi∇̄lKij +Kil∇̄jβ
l +Kjl∇̄iβ

l. (2.14)

Here,∇̄i is the spatial covariant derivative onγij , andR̄ij is the associated Ricci tensor
with γij . Our set of second order evolution equations for the metric is then completed
by rewriting our definition of extrinsic curvature using that fact that in our coordinates,
Lt ≡ ∂t

∂tγij = −2αKij + ∇̄iβj + ∇̄jβi. (2.15)

Equations [2.14] and [2.15] give us a complete set of first order evolution equations
given a well-posed initial value problem forγij andKij . Following the same procedure,
we also get the constraint equations

R̄+K2 −KijK
ij = 0 (2.16)

∇̄j

(
Kij − γijK

)
= 0. (2.17)

Equation [2.16] is known as theHamiltonian constraintand it constrains the three met-
ric γij , while equation [2.17] is themomentum constraintwhich constrains our extrinsic
curvatureKij . Valid initial data must satisfy these constraints on our initial slice. If this
condition is met, the Bianchi identities guarantee that they will continue to be satisfied
for all future slices in the evolution. This decomposition is known as theArnowitt-Deser-
Misner(ADM) scheme.

We are now left with the freedom to choose five components of the three metric and
three components of the extrinsic curvature. The metric retains full three dimensional
coordinate invariance on each slice. Each hypersurface represents at = const. slice of
the spacetime, so we choose how the initial hypersurface it embedded in spacetime is
represented by the trace of our extrinsic curvatureK. We must now choose a method for
decomposing our constraint equations to address this freedom.

One of the first problems to solve in numerical relativity is to find a formulation of the
Einstein equations which gives a stable and accurate longterm evolution. In the ADM ap-
proach, the Einstein equations split into elliptic constraint equations within the spacelike
hypersurfaces and hyperbolic evolution equations governing the time evolution normal
to the hypersurfaces. These constraints can be enforced within the evolution or left as
a test of the accuracy of the evolution. In addition, certaingauge variables appear that
can be freely specified and that reflect the general covariance of general relativity – the
field equations are invariant under transformations of the spacetime coordinates. These
properties create two new problems: how best to choose the gauge, and how to deal with
the evolution of the constraints. I discuss these two issuesin the next sections.

2.3.2 The BSSNOK Formulation

Although the ADM formulation can work for some models of gravitational collapse or
cosmological models in numerical treatments, it does not satisfy the requirements for sta-
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ble longterm evolution necessary for simulating the inspiral, merger, and ringdown of
compact binaries. This is because first order form of the ADM equations is only weakly
hyperbolic. It was recognized by Shiabata, Nakamura and Oohara and Kojima [27, 28]
and later elaborated further by Baumgarte and Shapiro [29] that a conformal traceless
decomposition of the ADM variables results in a scheme that allows for stable longterm
evolutions numerically. This scheme is known as the BSSNOK system. The ADM de-
composition gives us evolution equations for the metricγij in equation [2.15] and the
extrinsic curvatureKij in equation [2.14]. We further transform these variables as fol-
lows.

The three metric,γij , is conformally transformed via

φ =
1

12
ln det γij , γ̃ij = e−4φγij (2.18)

Here the conformal factorφ is evolved as an independent variable, andγ̃ij is subject to
the constraintdetγ̃ij = 1. The extrinsic curvature is subjected to the same transformation,
and its trace,trKij , is additionally evolved as an independent variable

K ≡ trKij = gijKij , Ãij = e−4φ

(
Kij −

1

3
γijK

)
, (2.19)

wheretrAij = 0. Lastly, we introduce the new evolution variablesΓ̃i = γ̃jkΓ̃ijk, defined
in terms of the Christoffel symbols of the conformal three metric. These connection
coefficients are introduced to better calculate the Ricci curvature, and to make our system
of evolution equations reproduce the wave equation in the linear limit.

Now that we have introduced the variables(φ, γ̃ij ,K, Ãij , Γ̃
i) to replace(γij ,Kij),

the Einstein equations specify a set of evolution equationsfor these new variables

(∂t −Lβ)γ̃ij = −2αÃij , (2.20)

(∂t − Lβ)φ = −1

6
αK , (2.21)

(∂t − Lβ)Ãij = e−4φ [−DiDjα+ αRij ]
TF + α

(
KÃij − 2ÃikÃ

k
j

)
, (2.22)

(∂t − Lβ)K = −DiDiα+ α

(
ÃijÃ

ij +
1

3
K2

)
, (2.23)

(∂t − Lβ)Γ̃i = γ̃jk∂j∂kβ
i +

1

3
γ̃ij∂j∂kβ

k + βj∂jΓ̃i − Γ̃j∂jβ
i +

2

3
Γ̃i∂jβ

j(2.24)

− 2Ãij∂jα+ 2α

(
Γ̃ijkÃ

jk + 6Ãij∂jφ− 2

3
γ̃ij∂jK

)
,

whereTF denotes the trace free part of the tensors in the brackets (T TFij ≡ Tij −
gijg

klTkl/3 for any tensorTij). This system gives us seventeen dynamical variables
(φ, γ̃ij ,K, Ãij , Γ̃

i), four gauge quantities(α, βi), and nine constraint quantities (from
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equations [2.16] and [2.17]) and the constraints on the new variables

H = e−4φ
[
R̃− 8D̃jD̃jφ− 8(D̃jφ)(D̃jφ)

]
+ (2.25)

2

3

[
K2 − Ãij γ̃

ij
]
− ÃijÃ

ij ,

Mi = 6Ãji (D̃jφ) − 2Ãij γ̃
ij(D̃iφ) − 2

3
(D̃iK) + γ̃kj(D̃iÃki) , (2.26)

A = Ãij γ̃
ij , (2.27)

S = det γ̃ij − 1 , (2.28)

Gi = Γ̃i − γ̃jkΓ̃ijk, (2.29)

and we are left with four degrees of freedom for the gravitational polarization modes– two
in the conformal three metric̃γij , and two in the transverse traceless part of the extrinsic
curvatureAijTT . All other freedoms either represent coordinate freedoms or are fixed by
the constraint equations. These constraint equations are independent of the kinematical
variablesα andβi that govern how our coordinates move through spacetime. TheBSSN
code used in this thesis enforces our coordinate constraints (A,S) but the physical con-
straints(H,Mi) are not actively enforced, and are allowed to evolve freely,as they are
used to monitor the accuracy of our evolutions [30]. We find that the BSSN system allows
for a variety of gauge conditions forα andβ but for stable evolutions through merger
there is a commonly used and convenient standard for contemporary numerical relativity.

Now, in order to evolve the system we have to specify conditions on the lapseα and
shift βi. The simplest approach is to setα = 1 andβi = 0, but this leads to a formulation
which is not strongly hyperbolic. Calledgeodesic slicing, this can cause the slice to touch
the coordinate singularity in the data [31]. Since one does not normally know in advance
what spacetime the initial data one specifies on the initial hypersurface will evolve to, one
would not like to specify the gauge as a fixed function of spacetime. Rather, we would like
to tie it to the dynamics so that it can adapt itself to the solution. One common approach
to evolve the lapse is according to the “1+log” slicing condition [32]

∂tα− βi∂iα = −2α(K −K0) , (2.30)

whereK0 is the initial value of the trace of the extrinsic curvature.One can then evolve
the shift according to a hyperbolic ‘Γ-driver’ condition [33]

∂tβ
i − βj∂jβ

i =
3

4
αBi , (2.31)

∂tB
i − βj∂jB

i = ∂tΓ̃
i − βj∂jΓ̃

i − ηBi , (2.32)

whereη is a damping coefficient. The advection terms on the right-hand-sides of these
equations are required to account for the advection of the punctures in “moving-puncture”
evolutions, which will be discussed in Section [2.4.4]. These are the gauge conditions
chosen for all BSSN evolutions discussed in this dissertation. This system is symmetric
hyperbolic (the significance of which will be discussed in Section [2.6.4]) in the linear
approximation and the corresponding linear initial value problem is, thus, well-posed.
Since in this case the evolution system for the constraint variables can also be reduced to



Chapter 2: Background 16

a symmetric hyperbolic system, it follows that the constraints are satisfied for all time if
satisfied initially.

This variation of the ADM equations containing additional auxiliary evolution terms,
known as the BSSN formulation, has been implemented with great success. The evolution
equations will have a set of eigenvalues and eigenvectors which indicate the presence of
modes that travel at or below the speed of light. However, superluminal modes will permit
error from inside the horizon to escape, and zero speed modeswill create an accumula-
tion of error on the evolution grid which will not advect away. The virtue of the BSSN
formulation is that all constraint-violating modes travelat the speed of light. This is not
the case for the ADM equations. In addition, while the ADM system is known to only
be weakly hyperbolic, the BSSN formulation has been shown tobe strongly hyperbolic
in the linear regime [34]. In the next section I describe a decomposition of the Einstein
equations which is manifestly symmetric hyperbolic in the full nonlinear regime.

2.3.3 The Harmonic Formulation

The decomposition of the Einstein tensor into evolution equations and constraints leaves
four degrees of freedom in the spacetime metric that are not set by the field equations
themselves, but can be freely specified. In a3+1 approach, these four degrees of freedom
are determined by the choice of the lapse and shift, which amounts to specifying four out
of ten metric components. The Arnowitt-Deser-Misner (“ADM”) equations [26] are a
well known reduction of the Einstein system corresponding to this style of gauge choice.

An alternate approach to fixing the gauge degrees of freedom specifies the action of
the wave operator on the coordinates, regarded as four scalar quantities. This is done by
first choosing four functionsFα(xρ, gρσ), known as ourgauge source functions, and then
constructing a coordinate mapxα subject to the condition [35] that the d’Alembertian of
each coordinate is

∇µ∇µxα =
1√−g∂µ

(√−ggµβ∂βxα
)

= −Fα . (2.33)

We may rewrite Eqs. (2.33) as constrained variables

Cα := ∇a∇axα − Fα = 0 , (2.34)

and using them in combination with the Einstein tensorGµν one obtains thegeneralized
harmonicevolution system

Eµν := Gµν −∇(µΓν) +
1

2
gµν∇αΓα . (2.35)

HereΓν is treated formally as a vector in construction the covariant derivative∇µγν .
When the constraintsCα are satisfied, this gives a manifestly hyperbolic evolutionsystem

Eµν = −∇(µF ν) +
1

2
gµν∇ρF

ρ . (2.36)

If the gauge source functions are chosen such that they do notdepend on derivatives
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of the metric, they will not enter the principle part of the system and will not affect its
well-posedness or stability numerically. In terms of thesevariables, the vacuum Einstein
equations are a system of ten wave equations acting on the metric components, coupled
through the coefficients of the wave operator and the source terms. The principle part of
the Einstein equations, thus, reduces to a second order hyperbolic form. This method is
the called the ’generalized harmonic’ formulation of the Einstein equations. Harmonic
coordinates were first introduced by deDonder [36] in 1921 toreduce the Einstein equa-
tions to 10 quasilinear wave equations. They were later usedby Choquet-Bruhat [25] to
give the first well-posed version of the Cauchy problem for the gravitational field. The
first successful numerical evolutions of the binary black hole problems was solved in
harmonic coordinates by Pretorius [19] in 2005. Many researchers have implemented nu-
merical evolutions schemes for harmonic formulations of the Einstein equations [37–41]
and since successfully solved the inspiral and merger of binary black hole problems.

For the formulation used in this dissertation we use a densitized inverse metric̃gµν :=√−ggµν as evolution variables, the harmonic constraints Eqs. (2.34) take the form

Cα = − 1√−g∂β g̃
αβ − Fα = 0 , (2.37)

while for the evolution equations we obtain

∂ρ (gρσ∂σ g̃
µν) − 2

√−ggρσgτλΓµρτΓνσλ −
√−g(∂ρgρσ)(∂σgµν) +

gρσ√−g (∂ρg
µν)(∂σg)

+
1

2
gµν
(

gρσ

2g
√−g (∂ρg)(∂σg) +

√−gΓτρσ∂τgρσ +
1√−g (∂σg)∂ρg

ρσ

)

+ 2
√−g∇(µF ν) −√−ggµν∇ρF

ρ +
√−gAµν = 0 , (2.38)

which takes the form of a quasilinear wave equation, where inthe final term we have
allowed for a constraint adjustment function which may depend on the metric and its first
derivatives,

Aµν := CρAµνρ (xρ, gρσ , ∂τgρσ) . (2.39)

These constraint adjustments implemented in the code are given from [42] and have the
form

Aµν := − a1√−gC
ρ∂ρg̃

µν +
a2C

ρ∇ρt

ε+ ǫστCσCτ
CµCν − a3√

−gtt
C(µ∇ν)t , (2.40)

where theai > 0 are adjustable parameters,ǫστ is the natural metric associated with the
Cauchy slicing, andε is a small positive number chosen to ensure regularity. These terms
vanish when the constraints are satisfied, and thus do not affect the principle part of the
evolution system. The effect of these terms is to suppress long wavelength instabilities
in standardized tests for periodic boundary conditions. The first and second term in the
adjustments suppress constraint violations in the nonlinear regime, while the third term
leads to constraint damping in the linear regime.

Assuming that the gauge source functionsFα are also chosen such that they do not
depend on derivatives of the metric, then the principle partof Eq. (2.38) consists of only
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its first term. That is, we have a set of ten wave equations of the form

∂ρ (gρσ∂σ g̃
µν) = Sµν , (2.41)

whereSµν are non-principle source terms consisting of at most first derivatives of the evo-
lution variables. By implication, this system inherits theproperty of the well-posedness
of the initial-boundary value problem for the wave equation.

Note that we do not explicitly enforce the harmonic constraints during the evolution.
Instead, we invoke the Bianchi identities, which for wave equations of the homogeneous
form gives

gρσ∂ρ∂σC
µ + Lµρσ ∂ρC

σ +Mµ
σC

σ = 0 , (2.42)

where the matricesL andM are functions of the metric and its first and second derivatives.
It is essential to have all of the initial data constructed ina way that satisfies the conditions

Cρ = 0 , ∂tC
ρ = 0 , (2.43)

as well as a construction of the boundary data that implies a homogeneous boundary
condition for the constraints. However, by satisfying these conditions, we arrive at a well-
posed initial boundary value problem (IBVP) for the constraint propagation system. Work
by Kreiss, Winicour, Reula and Sarbach [43] demonstrates that it is possible to construct
such boundary data while keeping the IBVP of the evolution system of the metric vari-
ables well-posed. In Section [3.1] we implement and test such boundary conditions and
compare them with simpler (unconstrained SAT and non-SAT) boundary treatments for
a number of test-problems. Since the harmonic constraints imply evolution equations for
the ‘lapse’ and ‘shift’, the only remaining free initial data (in addition to the three metric
and extrinsic curvature of the Cauchy hypersurface) are theinitial choices of lapse and
shift through the choice of gauge source functions.

In order to understand the feasibility of Eq. (2.38) as an unconstrained evolution sys-
tem, one needs to have insight into the associated constraint propagation system [44–46]

∇∇Cρ = Sρ(g, ∂g, ∂2g,C, ∂C,A, ∂A) , (2.44)

whereSρ is a source term dependent on the metric, the constraints, the constraint adjust-
ment term, and their derivatives. The principal part of Eq. (2.44) is, again, that of a wave
operator, implying the connection to results regarding thewell-posedness of the IBVP for
the wave equation.

This harmonic decomposition is second order in time. In the code discussed in this
dissertation, we found it more convenient to discretize anduse the method of lines to time-
integrate an evolution system which is first order in time. The reduction to first order in
time con be done in a number of ways. We have implemented the generalized harmonic
evolution system Eqs. (2.38), cast in a form that is first differential-order in time, and
second-differential order in space. We introduced the auxiliary variables

Qµν ≡ nρ∂ρg̃
αβ , (2.45)

are used to eliminate the second time-derivatives, wherenρ is time-like and tangential to
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the outer boundary [40]. The resulting evolution system takes the form

∂tg̃
µν = −g

it

gtt
∂ig̃

µν +
1

gtt
Qµν , (2.46)

∂tQ
µν = −∂i

((
gij − gitgjt

gtt

)
∂j g̃

µν

)
− ∂i

(
git

gtt
Qµν

)
+ S̃µν(g̃, ∂g̃, F, ∂F ) , (2.47)

whereS̃µν(g̃, ∂g̃, F, ∂F ) are non-principle source terms consisting of at most first deriva-
tives of the evolution variables and are determined by our choice of gauge.

The AEI harmonic code used in this dissertation in Section [3.1] is a fourth-order ac-
curate finite-difference code based on the University of Pittsburgh Harmonic code, Abigel
[47], which incorporates theorems establishing well-posedness and numerical stability of
the harmonic initial-boundary value problem. As noted earlier, the gauge source functions
Fµ may be chosen to be arbitrary functions of the spacetime coordinate metric. They can
be viewed as differential gauge conditions on the densitized metric. For most of the tests
in this dissertation we set our gauge source functionsFµ = 0 and thus evolve a strictly
harmonic system. The exceptions are for analytic convergence tests, where we set

Fµ = − 1√
− det gµν(0)

∂ν g̃
µν
(0)
, (2.48)

wheregµν(0) is our analytic metric; and for black hole spacetimes, wherewe set

Fµ =
ω√

− det gµν
(g̃tν − ηtµ) , (2.49)

whereηµν is the Minkowski metric, andω is a smooth, weighting function. In our binary
black hole simulations, we have found that this choice of gauge source function keeps
the lapse and shift under reasonable control as the black holes evolve. The rest of the
simulations performed in this thesis are purely harmonic (i.e.Fµ = 0).

Unlike mixed hyperbolic-elliptic formulations, hyperbolic formulations, such as this
one have the advantage that there are a well-developed mathematical methods for ana-
lyzing the well-posedness of the IBVP. For both harmonic andBSSN formulations, this
hinges on the boundary conditions that one imposes at the outer boundaries of the com-
putational domain. Obtaining stable boundary conditions that avoid spurious reflections
and preserve well-posedness is a main focus of this thesis and will be discussed for both
formulations discussed in this section and in Chapter [3].

2.4 Initial Data

Let us watch well our beginnings, and results will manage themselves.

Alexander Clark



Chapter 2: Background 20

General relativity, as all classical physics, is deterministic– the behaviour of our sys-
tem is completely dependent on initial conditions. If data is derived that gives “appropriate
initial data” such that it specifies an initial slice that uniquely determines the system for
all subsequent evolution, we say that we have an initial value formulation. If, addition-
ally, small changes in initial data result only in locally small changes in the solution, and
changes in the system are causally bounded, then we may say that we have awell-posed
initial data formulation. All numerical relativity simulations must start with a hypersur-
face that describes our gravitational field at some initial slice in space-time. This is our
initial data (ID). We must evolve this data into neighboringhypersurfaces according to
our evolution equations, as defined by our decomposition of the Einstein equations, as
discussed in the previous section [2.3]. The Einstein equations also constrain our choices
for initial data. Because of the non-linearity there is no unique way of choosing which
parts of our initial data may be freely specified, and which parts may be constrained.
When constructing solutions of the Einstein initial value equations we are free to specify
the topology of the initial data hypersurface. The Einsteinequations place no constraints
on the topology of the spacetime they describe, or of the hypersurfaces that foliate it. In
this section we will introduce some common methods for describing binary black hole
initial data in the two coordinate systems introduced in theprevious section.

Two methods have been developed to deal with the singularityproblem of numerical
relativity – namely thepuncturemethod [48, 49], which generalizes the Brill-Lindquist
prescription [50] for initial data of black holes at rest anduses the Bowen-York extrinsic
curvature [51] to solve the Hamiltonian constraint numerically for moving spinning black
hole initial data [49,52]; and theexcisionmethod [53], in which a portion of the spacetime
containing the singularity is not evolved and the horizon surrounding it is treated as in
inner boundary. In this section we introduce these two methods. I will also discuss and
compare two methods used for obtaining physical orbital parameters spins needed for
to prescribe the initial data described here – namely quasi-circular, and post-Newtonian
derived parameters. First, as an illustration I will describe single black hole data, and then
I will move forward to multiple black hole initial data specification.

2.4.1 Time Symmetric Schwarzschild

The simplest black hole solution is the Schwarzschild solution, as it represents a static
spherically symmetric single black hole connecting two causally disconnected asymptot-
ically flat surfaces. The simplest representations of the Schwarzschild solution are time-
symmetric (Kij = 0), and thus exist on a “maximally embedded” hypersurface (K = 0).
This fixes our choice of foliation forΣ. The interval for Schwarzschild may be written

ds2 = −
(

1 − M
2r̃

1 + M
2r̃

)2

dt2 +

(
1 +

M

2r̃

)4 (
dr̃2 + r̃2dθ2 + r̃2sin2θdφ2

)
. (2.50)

M represents the mass of the black hole as measured at spacelike infinity. By choosing
a time-symmetric initial data hypersurface, we immediately getKij = 0, eliminating the
need to solve the momentum constraints. If we choose a conformal three geometry given
by a flat metric the Hamiltonian constraint becomes∇̃2φ = 0 as we approach infinite
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distance. The simplest solution of this equation is

φ = 1 +
M

2r̃
, (2.51)

we now have the full Cauchy data representing a single stationary black hole. All that is
left is to choose a lapse and shift before we can integrate theevolution equations in [2.14]
and [2.15]. In this case we may demand that∂tK vanishes. This yields amaximal slicing
equation for the lapse, which takes the form

∇̃2(αφ) = 0 . (2.52)

It is convenient, in these coordinates, to choose boundary conditions such that the lapse is
frozen at the event horizon (a(r̃ = M/2) = 0) and such that it goes to one at infinity

α =
1 − M

2r̃

1 + M
2r̃

, . (2.53)

If we now chooseβi = 0, we find that the left hand side of the evolution equations vanish
and we have a static solution for the Einstein equations.

With this choice for the lapse and shift, frozen at the event horizon, we find that the
solution covers only the black hole exterior. To cover the interior would require the use
of a non-spacelike slice. This is what happens when the usualSchwarzschild areal-radial
coordinates are used. Atr = 2M we would encounter a coordinate singularity, which is
not possible to evolve numerically. This frozen lapse and shift at the horizon also creates
an incompatible over-specification of the gauge for the horizon boundary.

2.4.2 Brill-Lindquist Data

As we saw in the previous section, the easiest way to generateinitial data is to assume
time symmetry and a conformally flat three geometry. One approach for generating time-
symmetric multiple black hole data is Brill-Lindquist initial data [50]. We again assume
a flat conformal geometry, and we have to solve for a Hamiltonian constraint of the form
∇̃2 = 0. We can use the linearity of the Hamiltonian constraint to choose the solution to
be a superposition of each black hole solution. ForN black holes

φ = 1 +

N∑

σ=1

µσ
2 | x− Cσ | , (2.54)

where| x − Cσ | is the distance fromCσ to the position of the hole in Euclidean space,
andµσ are constants related to the masses of the holes. Each pointx = Cσ represents
infinity in a different causally disconnected universe, giving N + 1 asymptotically flat
hypersurfaces connected throughN black holes. The universe containingN black holes
cannot be isometric to any of the other universes connected to each hole, unlike in the
Schwarzschild solution. Brill-Lindquist data haveN singular points representing an im-
age of infinity as seen through the throat of the black hole connecting to ’our’ universe.
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Misner [54] found a construction for the time-symmetric Hamiltonian constraint which
has two isometric asymptotically flat hypersurfaces forN black holes. The analytic rep-
resentation of Misner initial data can only be made in terms of an infinite series expansion.
This data contains an infinite number of singular points for each hole. In the next sections
I will address two ways by which these singularities are dealt with numerically, and the
formulation of more generic, more physically relevant initial data.

2.4.3 Excision

Time-symmetric black-hole solutions of the constraint equations such as those in the pre-
vious section are useful as test cases, because they have analytic solutions. However,
they are not physically accurate or relevant. To generate time-asymmetric solutions for
moving and/or spinning black holes we may make generalizations of the Misner and Brill-
Lindquist data formulations. The first approach to be developed (and the approach used
in our black hole spacetimes for all harmonic coordinate simulations) is a generalization
of Misner data. This choice was made because two isometric universes means solving for
one universe gives you both solutions, rather than trying tosolve constraints forN + 1
manifolds. The fact that the throats of the black holes are fixed-point sets in the isometry
allows you to specify boundary conditions on the horizons and thus excise the black hole
interiors. This generalization was developed by York and his collaborator [51, 55–58] in
1979, and was for a very long time the standard choice for intial data in numerical rela-
tivity for binary black hole spacetimes. This approach begins with a set of assumptions
about the geometry of the solution

K = 0 , maximal slicing , (2.55)

γ̃ = fij , conformal f latness ,

φ |∞ = 1 , asymptotic f latness ,

wherefij represents a flat metric in the chosen coordinate system. Onefeature of the
assumption of conformal flatness is that, for the BSSN system, we find that the momentum
constraints decouple from the Hamiltonian constraint. This is important because it allow
one to choose analytic solutions for black holes with both momenta and spins.

The solution of the momentum constraints gives us the trace-free part of the extrinsic
curvature

Ãij =
3

2r2

[
Pinj + Pjni − (fij − ninj)P

knk

]
(2.56)

+
3

r3

[
ǫkilS

lnknj + ǫkjlS
lnkni

]
,

whereP i andSi are vector parameters andni is the outward pointing unit normal of the
sphere in flat conformal space. Using this solution and the assumptions in [2.55] we can
set physical values for the linear and angular momentum of each black hole in our intial
data construction. We find that the linear momentum of the hypersurface is given byP i

and the angular momentum bySi. Because the momentum constraints are linear we can
add any number of solutions for any collection of momenta.
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By the method of images we can make the tensors in our solutioninversion symmetric,
like those in the Misner solution. There are two inversion symmetric solutions for the
extrinsic curvature of a single black hole

Ã±
ij =

3

2r2

[
Pinj + Pjni − (fij − ninj)P

knk

]
(2.57)

∓ 3a2

2r4

[
Pinj + Pjni + (fij − 5ninj)P

knk

]

+
3

r3

[
ǫkilS

lnknj + ǫkjlS
lnkni

]
,

wherea is the radius of the throat of the black hole. Thisr = a surface is where we set
our excision boundary conditions. For more than one black hole the process for making
the solution inversion symmetric gives and infinite series solution. However this solution
converges rapidly and is easy to evaluate numerically.

Once we have an inversion symmetric extrinsic curvature, wecan find a likewise
inversion symmetric solution for the Hamiltonian constraint. With the assumptions in
[2.55] the Hamiltonian constraint for our solution is

∇̃2φ+
1

8
φ−7ÃijÃ

ij = 0 . (2.58)

The isometry condition gives us a condition on the conformalfactor,φ, at the throat of
each hole

niσ∇̃iφ |aσ= − φ

2rσ
|aσ , (2.59)

whereniσ is the outward pointing unit normal to theσth throat andaσ is the coordinate
radius of theσth throat. We can plug this condition into our equation for the Hamiltonian
constraint [2.58] as a boundary condition on the horizons of the throats when solving
the region exterior to the throats. Finally, all that is leftis to choose an outer boundary
condition. This is needed in order for the quasilinear elliptic equations above to be solved
as a well-posed boundary-value problem. This final condition comes from the fact that
we have an asymptotically flat solution. Thus, the solution behaves as

φ = 1 +
E

2r
+ O(r−2) , (2.60)

whereE is the total ADM energy content of the initial hypersurface.In Chapter [3] and
Section [2.6.5] we will discuss some solutions to this boundary value problem.

2.4.4 Punctures

In 1997 Brandt and Brügmann [49] realized a method to factor out analytically the be-
havior of the singular points in the Euclidean manifold of theN + 1 sheet Brill-Lindquist
approach. This “puncture” method allows us to rewrite the constraint equations on an
N + 1 hypersurface manifold as equations for different functions on a simple Euclidean
manifold. This approach was first successfully used for numerical simulations of binary
black hole inspirals in 2005 [20–22,33,59,60], and has since become the standard initial
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Figure 2.3: A diagram illustrating the various described methods of initial data formu-
lation. Image (a) represents theN + 1 sheet description from of Brill-
Lindquist data and the puncture approach; image (b) represents Misner data
and the Bowen-York solution, and image (c) represents Misner’s wormhole
solution.

data formulation for binary black hole simulations in the BSSN evolution system.

The generalization of the Brill-Lindquist data begins withthe same assumptions as the
Bowen-York approach [2.55]. We, therefore, again have the trace-free part of the extrinsic
curvature from the solution of the momentum constraints

Ãij =
3

2r2

[
Pinj + Pjni − (fij − ninj)P

knk

]
(2.61)

+
3

r3

[
ǫkilS

lnknj + ǫkjlS
lnkni

]
,

whereP i andSi are vector parameters andni is the outward pointing unit normal of the
sphere in flat conformal space. Then, based on a time-symmetric solution we may assume
a conformal factor of the form

φ =
1

χ
+ u ,

1

χ
≡

N∑

σ=1

µ0

2 | x− Cσ | . (2.62)

Here we require asymptotic flatness and a smooth function foru, and thus requireu =
1 + O(r−1). Substituting the Hamiltonian constraint gives

∇̃2u+ η(1 + χu)−7 = 0 , η =
1

8
χ7ÃijÃ

ij . (2.63)

Near each singularity, or “puncture”, we obtainχ ≈| x − Cσ |. The trace-free part
of the extrinsic curvaturẽAijÃij behaves no worse than| x− Cσ |−6, and soη will
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vanish at each puncture faster than| x− Cσ |. This gives us a uniqueC2 solution of our
modified Hamiltonian constraint, and an approach which allows us to specify the mass
and position of our black holes as parameterized byµ0 andCσ respectively. The linear
momenta and spins are, again, parameterized byPσ andSσ respectively in the conformal
extrinsic curvature of each hole. We only need to obtain a solution for u on a simple
Euclidean manifold. With this formulation there is no need for inner boundary conditions,
as the singularity is avoided if we choose a grid for our evolution domain such thatCσ
is between grid points, andu is continuous. This is a significant advantage, as dealing
with excision boundaries accurately in highly dynamic numerical simulations is one of
the biggest challenges of the Bowen-York approach. Both because of the numerical and
physical inaccuracies created by artificial boundaries, and more significantly because of
the constraints on the gauge.

In this fixed puncture prescription, the black hole singularity is split into singular and
nonsingular pieces, with the singular piece being handled analytically and not evolved.
Because the coordinates of the punctures are fixed, the coordinate system becomes dis-
torted as the binary is evolved, eventually causing any numerical code to crash. However,
by choosing appropriate gauge conditions, and by taking advantage of the discrete nature
of finite differencing codes used in numerical relativity, it was found that the singular part
of the puncture could be evolved along with the nonsingular part, thus avoiding coordinate
distortion [61]. This breakthrough, referred to as the “moving puncture” method, opened
the door for many numerical relativity groups studying black hole binaries to successfully
run long-term stable simulations from inspiral smoothly through merger and ringdown
without tuning.

To avoid problems with evolving the interior of the hole we need to make sure no
derivatives of the extrinsic curvature show up in our evolution equations. We, therefore,
must choose a shift vector which vanishes, and a lapse for which its first derivatives vanish
at the punctures. This is not a problem, because for grids staggered about the punctures,
the first derivatives of the lapseα are sufficiently close to zero near the punctures that
they cause no discontinuities in the evolved data. Thus, an important element in achiev-
ing stable evolution of the binary black hole problem in the BSSN formulation is choosing
coordinates that allow the punctures to move through the grid without allowing any evo-
lution at the location of the puncture itself. The conditions for lapseα and shiftβi that
have been most successful thus far are known as1+log slicingand theGamma driver shift
conditions

∂tα− βi∂iα = −2α(K −K0) , (2.64)

∂tβ
i − βj∂jβ

i =
3

4
αBi , (2.65)

∂tB
i − βj∂jB

i = ∂tΓ̃
i − βj∂jΓ̃

i − ηBi , (2.66)

as discussed in section [2.3.2], whereK0 is the initial value of the trace of the extrinsic
curvature. Common initial conditions areβi = Bi = 0 andα = 1/φ2

BL, whereφBL =
1 +

∑
i

mi

2|x−Cσ|
is the Brill-Linquist conformal factor used for the puncture ID.

The problem with both the initial data generation methods described is that they as-
sumeK = 0 , M̃ ij = 0 and that the conformal geometry is flat. These assumptions
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are not necessarily compatible with the physical system we are trying to simulate. For
either method the solution for a single spinning black hole does not generate a Kerr so-
lution, as the Kerr solution is not a conformally flat geometry. Since the Kerr solution
is stationary, conformally flat intial data will always contain a non-vanishing dynamical
component. Thus, when we evolve either of the initial data prescriptions described, the
system will emit non-physical gravitational radiation, asit attempts to settle to the Kerr
geometry. This means that all simulations from these initial data will generate some un-
physical ‘junk’ radiation which will contaminate the initial signal. Fortunately, such junk
radiation will radiate off the evolution domain and leave usevolving physically realistic
data. However, this inaccuracy must always be taken into account, and reflections of the
junk radiation are an important reason for wanting better boundary conditions.

2.5 Numerical Methods and Implementation

Man inhabits a realm half in and half out of nature, his mind reaching forever
beyond the tool, the uniformity, the law, into some realm which is that of the
mind alone.

Loren Eiseley

Now that we have a set of evolution equations, gauge conditions, and initial data,
we need to choose a method to evolve this system numerically.Achieving a numerical
implementation of a PDE system is a difficult task. We are trying to model an infinite con-
tinuum spacetime with a finite discrete numerical representation. Modelling the Einstein
equations in black hole spacetimes is wrought with problems. Lack of a preferred frame,
gauge issues, a system of ten tightly coupled equations, singularities, artificial bound-
aries, accelerating dynamics all complicate the task of successfully evolving an accurate
representation of the physical system. A crucial componentto any numerical code is the
choice of numerical methods, which, for large simulations must, deal with a balance of
accuracy and efficiency, in addition to the problems specificto the modelling of binary
black hole spacetimes. Here I give a partial description of the methods used to address
these problems. In the next section [2.7] I will describe the implementation and execution
of these methods and the framework under which they were implemented.

2.5.1 The Finite Difference Approximation

To evolve our evolution equations numerically we must first discretize our continuum in-
tial data and solve our PDEs on this discrete grid. In the finite difference approach one
covers the simulation domain by a discrete grid and the numerical approximation is repre-
sented by its values at the grid points. Using Taylor series expansions, we replace a partial
differential equation with an algebraic equation on a discrete computational grid in order
to discretize the form of the equation. Solving the discretized partial differential equation
consists of a finite series of basic floating point operationswhich can be performed rapidly
on modern computer clusters.
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Thus we must evolve our system using a discrete grid. To do this the numerical
domain is covered by an equidistant grid, where a Cartesian grid is represented by points
at the values (for a grid staggered about the origin)

xi = (i− 1

2
)hx , 0 ≤ i ≤ Nx , (2.67)

yj = (j − 1

2
)hy , 0 ≤ j ≤ Ny , (2.68)

zk = (k − 1

2
)hz , 0 ≤ k ≤ Nz . (2.69)

HereNx , Ny, andNz are the total number of grid points in each direction, andh is the
grid spacing in each direction,

hx =
(xmax − xmin)

Nx
, hy =

(ymax − ymin)

Ny
, hz =

(zmax − zmin)

Nz
. (2.70)

The finite difference approach approximates a continuum expression using the Taylor
series expansion. By taking Taylor series expansions abouta point, a discrete approx-
imation to the derivative operator at that point is obtained. For example, for centered
differencing in first order convergent form

f(x+ h) = f(x) + h
df

dx
|x +

h2

2

d2f

dx2
|x +

h3

6

d3f

dx3
|x + . . . (2.71)

f(x− h) = f(x) − h
df

dx
|x −h

2

2

d2f

dx2
|x −h

3

6

d3f

dx3
|x + . . . (2.72)

df

dx
=

f(x+ h) − f(x− h)

2h
− 1

6
f ′′′(ζ)h2 , (2.73)

wherex − h ≤ ζ ≤ x + h andh is the grid spacing from Eq. [2.70]. The discrete
approximation differs from the continuum expression by a truncation error related to the
computational grid spacing. All simulations in this thesisare with fourth or sixth order
convergent differencing operators. Fourth order operators are:

df

dx
=

−f(x+ 2h) + 8f(x+ h) − 8f(x− h) + f(x− 2h)

12h
, (2.74)

d2f

dx2
=

−f(x+ 2h) + 16f(x+ h) − 30f(x) + 16f(x− h) − f(x+ 2h)

12h2
,(2.75)

with a five point stencil for second derivatives. Most simulations in this dissertation are
done using summation by parts (SBP) satisfying derivative operators, with weighted side-
ways differencing on the boundary. The derivation and implementation of the first and
second derivative operators will be discussed in Section [3.1.3].

Assuming that we have a well-behaved solution which allows aTaylor series expan-
sion, we may relate the numerical solutionS̃ to the analytical solutionS via

S̃ = S + O(hσ) , (2.76)
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whereσ is the convergence rate.σ may be measured by running a given simulation
at multiple resolutions with the same conditions. Given three discretized solutions,
S̃(h) , S̃(h/q) andS̃(h/q2) we obtain

L ≡ S̃(h/q) − S̃(h) = O((h/q)σ − hσ , (2.77)

M ≡ S̃(h/q2) − S̃(h/q) = O((h/q2)σ − (h/q)σ ,

L

M
=

q−σ − 1

q−2σ − q−σ
= qσ , σ =

log( LM )

log q
.

In addition to proving that our discrete system approximates a continuum solution as
h→ 0, from σ we may extrapolate our numerical results to a continuum solution.

Convergence in numerical simulations is a necessary condition for code verification.
This is particularly true for the numerical relativity casefor ninary black hole simulations,
because we have no exact solutions and no data to compare against. If the solutions
produced by a code run for the same parameters at different resolutions does not converge
at the expected rate, then there is a source of divergence somewhere in the code and
something is broken. Courant, Friedrichs, and Lewy introduced the significance of this
problem in numerical simulations in 1928 [62]. No finite differencing simulation can
claim to solve a differential equation accurately unless itcan show convergence of the
proper order. All simulations in this thesis were tested forconvergence for various test
cases. All spatial differences used in this thesis are fourth order, and thus have a truncation
error proportional toh4. The harmonic simulations have second order differencing on the
boundaries and thus converge to second order as those inaccuracies spread to the rest
of the simulation domain. This convergence order depends not only on the order of the
spatial differencing methods, but also on the order of the method used for time integration,
which will be discussed in the next section.

2.5.2 Method of Lines

Now that we have discretized our simulation domain and defined approximations to the
continuum spatial differential operators, we need to definea way to step forward in time
by integrating our hyperbolic evolution equations. The general method we use to do this
in all simulations discussed in this thesis is called the method of lines (MoL). The idea is
to finite-difference the spatial derivatives of the PDE as described in the previous section,
leaving the time derivatives continuous. This leads to a coupled set of ordinary differential
equations (ODE) for the time dependence of the variablesu = (uij) at the spatial grid
points,

∂tu = f(t, u) , (2.78)

With the initial conditionsu(t0) = u0. A suitable ODE integrator is then used to integrate
these ODEs forward in time. There are many different possibilities for this, but in the
simulations discussed in this dissertation, we used eitherthe iterative Crank Nicolson
scheme, or the 4th order Runge-Kutta scheme.

The ODE integrators we consider here belong to the class of explicit Runge-Kutta
schemes. Given the unknownsun at timetn, these compute an approximationun+1 at
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time tn+1 = tn + ∆t as follows:

k1 = f(tn, un) ,

k2 = f(tn + c2∆t , u
n + a21∆tk1) ,

k3 = f(tn + c3∆t , u
n + a31∆tk1 + a32∆tk2) ,

...

ks = f(tn + csh , u
n + as1∆tk1 + as2∆tk2 + . . . + as,s−1∆tks−1) ,

un+1 = un + ∆t(b1k1 + . . .+ bsks) ,

for ans stage time stepping scheme. Any particular integration scheme is uniquely defined
by the coefficientsaij , bi andci, which may be written as a tableau

0
c2 a21

c3 a31 a32
...

...
...

. . .
cs as1 as2 . . . as,s−1

b1 b2 . . . bs−1 bs

(2.79)

Consistency requires that
∑s

k=0 bk = 1. The method is said to bepth order for a smooth
functionf if

‖ un+1 − un ‖= O(∆tp+1) (2.80)

The simplest Runge-Kutta method is the Euler method

un+1 = un + ∆tf(tn , un) , (2.81)

which is first-order and is represented by the tableau

0

1
(2.82)

Two second-order Runge-Kutta methods are given by the tableaux

0
1 1

1
2

1
2

0
1
2

1
2

0 1

(2.83)

The first is known as thetrapezoidal rule, the second as themidpoint rule. Two examples
of third-order methods are

0
1
3

1
3

2
3 0 2

3
1
4 0 1

4

0
1 1
1
2

1
4

1
4

1
6

1
6

2
3

(2.84)
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The first isHeun’s (third order) method, the second is derived in Shu and Osher [63].
There are many known fourth-order Runge-Kutta (RK4) methods, the one used in the
simulations in this dissertation is as follows

0
1
2

1
2

1
2 0 1

2
1 0 0 1

1
6

1
3

1
3

1
6

(2.85)

For ordersp > 4, it is one can no longer construct a method withs = p stages.

Another method that in very popular in numerical relativityis the iterative Crank-
Nicolson(ICN) method[64], which was developed by Choptuik from theimplicit Crank
Nicolson scheme[65]. ICN is given by the iteration equations

k1 = f(tn, un) ,

k2 = f(tn +
1

2
∆t , un +

1

2
∆tk1) ,

k3 = f(tn +
1

2
∆t , un +

1

2
∆tk2) ,

...

ks = f(tn +
1

2
∆t , un +

1

2
∆tks−1) ,

un+1 = un + ∆tks) .

In the limit s→ ∞ this yields the implicit Crank-Nicolson method

un+1 − nn

∆t
= f

(
un + un+1

2

)
. (2.86)

As you can see from equation [2.86], the iterative version of ICN can also be seen as an
explicit Runge-Kutta scheme with

0
1
2

1
2

1
2 0 1

2
...

...
...

. . .
1
2 0 0 . . . 1

2

0 0 . . . 0 1

(2.87)

As you can see, the ICN method is always second order, regardless of the number of steps.
Thus it is worth while to compare with the implicit Crank-Nicolson scheme, to minimize
the computational time spent on time integration while maximizing the regime of values
of ∆t which preserve a stable evolution. All of the simulations discussed in this thesis
use RK4 time integration in order to preserve fourth order convergence.
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2.5.3 Numerical Dissipation

For complicated systems of PDEs there exist solutions in theintegration of the system
that grow exponentially, likeeat/h, for some positive value ofa and grid spacingh. These
unstable modes are not present in the continuum problem but appear as a result of the
finite difference approximation [2.5.1]. The instabilities may arise because high frequency
modes may appear and grow because they cannot be resolved on the discrete grid. For
this reason we need to apply a filter to suppress these artificially growing high frequency
modes. We call this approach numerical dissipation.

One of the most popular approaches for the elimination of these spurious modes is
known asKreiss-Oliger dissipation[66, 67]. We may apply this method of dissipation to
the right-hand-side (RHS) of our time integration equation[2.78] via an operator such as

(D4u)j = − 1

16
h−1(uj−2 − 4uj−1 + 6uj − 4uj+1 + uj+2) , (2.88)

from the Taylor expansion

(D4u)j = − 1

16
h3(u′′′′)j + O(h5) . (2.89)

For our simulations we use sixth order dissipation. Becauseour finite-differencing
is forth-order accurate, the order of accuracy is not changed when addingD6u to the
right-hand-side,

∂tu = f(t, u) + ǫDD6u . (2.90)

We see that adding dissipation will decrease the amplification factor of high frequency
modes. The same argument as above for the advection equationshows that

| ∆t

h
ǫD |≤ 1 (2.91)

is needed for stability. We apply the sixth-order operator both in all coordinate directions
and add it to the right-hand-side of the discretized evolution equations at all grid points.
This is applied to all simulations performed for this thesis.

2.6 Simulation Physics

With the tools described in the previous section we can now evolve the Einstein equa-
tions using one of the formulations described in section2.3 on a relativistic space time
described by one of the initial data formulations describedby 2.4. We can the integrate
that system on a numerical grid using finite differencing2.5.1and method of lines2.5.2
to evolve our initial data according to our chosen evolutionsystem. The primary output
of such numerical relativity simulations are some approximate and discrete representa-
tion of the spacetime geometry. Now that I have described thetools necessary to make
such a working code, I need to explain how we extract further physical data from these
evolutions.
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Figure 2.4: A diagram illustrating a cross-section of a 3-coordinate shape (the curvy
line) which is not Strahlkörper about the local coordinate origin (the central
point). The arrows show rays from the origin which intersectthe shape
more than once.

For the sake of analysis and diagnostics one needs to extractdata such as the motion
of the black holes, the properties of their horizons, and theemitted gravitational radiation.
We need to extract these properties from the metric quantities evaluated in our numerical
relativity code. Further, I will explain how we determine and prove the accuracy of this
data and of the code itself. In this section I will explain howwe extract information from
the simulations in this thesis from the discrete spacetime geometry given us directly by the
simulations. In the section following this I will explain the specifics of the implementation
used for all the described tools, and with that I will be readyto discuss the results of my
research and the work involved therein.

2.6.1 Apparent Horizon Finder

A key diagnostic for numerical evolutions of black hole spacetimes, and a key source of
astrophysical data comes from analysis of the black hole horizons. Anevent horizonof
an asymptotically flat spacetime is the boundary between thespace for which a future-
pointing null geodesics can reach future null infinityJ . This continuous null surface is
definednon-locallyin time [68]. As a global property of the entire spacetime it can only be
obtained as part of post-processing for any simulation thatevolves forward in time. How-
ever, for any numerical run it is important to monitor the properties of your black holes to
make sure you are evolving real physics, without having to wait for the simulation to reach
completion. For this purpose, we calculate the properties of theapparent horizon(AH) of
the black holes. An apparent horizon is definedlocally in time on a spacelike slice, and
can thus be calculated “on the fly” at each time-step in a computational simulation.

A marginally outer trapped surface(MOTS) is a smooth closed 2-surface in a slice
whose congruence of future-pointing outgoing null geodesics havezero expansionΘ.
There may be several such surfaces, some nested inside others. An apparent horizonis
defined to be theoutermostmarginally trapped surface. That is, it cannot be containedin
any other MOTS. In terms of our3+1 variables, an apparent horizon satisfies the equation

Θ ≡ ∇in
i +Kijn

inj −K = 0 (2.92)
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for the expansionΘ of the outgoing null geodesics, whereni is the outward-pointing unit
normal to the apparent horizon, and∇i is the covariant derivative operator associated with
the 3-metricgij in the slice [69]. This condition is a nonlinear elliptic PDEcontaining the
3-metricgij and its spatial derivatives, the extrinsic curvatureKij , and the conformal fac-
tor φ. This outermost surface is coincident with the boundary of a“trapped surface” – i.e.
a surface whose future-pointing outgoing null geodesics havenegativeexpansion. The ex-
istence of such a surface automatically implies the existence of a black hole (given certain
technical assumptions are met, including energy conditions and a reasonable gauge).

To parameterize a horizon’s shape, one method is to assume that one can define some
local coordinate origin inside theS2 surface such that the spatial coordinate shape around
that point is aStrahlkörper(or star-shaped region) defined as

a region in Euclidean space containing a surface for which all rays radiating
from the ’origin’ intersect only one point on that surface.

Thus, the shape in figure2.4 is not a Strahlkörper shape because there is no point inside
the surface for which there does not exist lines which intersect the surface three times.
Given this Strahlkörper assumption we may parameterize oursurface by

r = h(θ, φ) (2.93)

wherer ≡ [
∑

i(x
i − xi0)

2]1/2 is the Euclidean distance from the local coordinate origin,
xi0, to a surface point, thush : S2 → ℜ+ describes all points on the horizon surface.

To write the expansionΘ (2.92) in terms of this parameterization one must define
a scalar function which vanishes on the surfaceh(θ, φ) and increases outward from the
origin, (3)F ≡ r − h(θ, φ). We take the outward-pointing normal co-vector to the AH
surface as the gradient ofF ,

si ≡(3) si ≡ ∇(3)
i F = ∂ir − ∂ih =

xi

r
−Xu

i ∂uh, (2.94)

where the coefficientsXu
i ≡ ∂yu/∂xi andyu ≡ (θ, φ). This gives us the outward normal

to the AH surface

ni =
si

||sk|| =
gijsj

(gklsksl)1/2
(2.95)

which gives us the expansion

Θ ≡ ∇in
i +Kijn

inj −K (2.96)

= ∂i
gijsj

(gklsksl)1/2
+ ∂i(ln

√
g)

gijsj

(gklsksl)1/2
+
Kijsisj
gklsksl

−K

If we set this expansion to zero andr = h we can obtain the shape and position of the AH
surface in terms of the metric, its derivatives and the extrinsic curvature:

Θ ≡ Θ(h, ∂uh, ∂uvh; gij ,Kij , ∂kgij) = 0 (2.97)

With this equation for an apparent horizon, we then need an algorithm to solve this equa-
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tion on the fly in our simulations.

We can use a direct elliptic solver to take the level surfaceH(r, θ, φ) = r − h(θ, φ),
and interpret the horizon equation (2.92) as a nonlinear second order elliptic differential
equation for the functionh(θ, φ). We may simply calculate all derivatives using finite
differences and then apply Newton’s method to solve the resulting system. Thus, our
system (as written by Jonathan Thornburg [70]) computes theJacobianJ [Θ(h)] of the
expansionΘ = Θ(h) of a trial horizon surfacer = h(θi, φj) from the metric data in the
Schwarzschild/Eddington-Finkelstein metricgij andKij .

This system, of course, requires a good initial guess to converge on a solutions for
the horizon, otherwise Newton’s method will diverge. Therefore, the initial parameters
must be specified to the horizon finding algorithm where the horizons sit in the initial
data, and what sort of geometry the initial data defines. So long as the horizons are found
with enough frequency in time-steps relative to the velocity of the black hole through
the coordinate space that the horizon has not moved too far from it’s previously known
location between iterations, this system will remain accurate and efficient. Thus we have
a method for tracking the coordinate movement and shapes of the black hole horizons in
our simulations.

2.6.2 Isolated Horizon Finder

Information such as the horizon spins, relative velocities, and masses can be extracted
now that we know how to solve for the shape and coordinate motion of our black hole
horizons. The notions ofisolatedanddynamicalhorizons allow us to define the mass
and angular momentum associated with these holes on the fly during a dynamical simula-
tion [71]. This theory works by defining anon-expanding horizonas a null hypersurface
H that is foliated by marginally trapped surfaces. For a stationary horizon, this means
stacking apparent horizons at spatial hypersurfaces to form a non-expanding world-tube.
An isolated horizonmay be defined as a non-expanding horizonH whose intrinsic geom-
etry is not evolving along the null generators [72]. This allows one to use the Hamiltonian
formulation to define our mass and angular momentum.

The formula for the angular momentum of the horizon can be derived with the as-
sumption that our horizons are axisymmetric, and thus have aφ Killing vector field

Lφqij = 0 , (2.98)

whereqij := γij−sisj is the induced metric on the horizon for outward-pointing normals
si. We can then derive the magnitude of the angular momentum from

JH =
1

8π

∮

S
φℓsmKℓmdA . (2.99)

This is identical to the ADM angular momentum with the exception that it is calculated
on the horizon instead of at infinity.

From the angular momentum and horizon surface we can then obtain the mass of the
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black hole from the equation

M2
H =

AH
16π

+
4πJ2

H

AH
, (2.100)

whereAH is the horizon area. Thus, we have extracted all informationclassically avail-
able from a stationary black hole horizon. We may then use thenotion of adynamical
horizonas aspacelikehypersurfaceH that is foliated by marginally trapped surfaces to
define fluxes and balance laws for mass and angular momentum for non-stationary hori-
zons. Therefore, we can accurately measure the mass and spinof our simulated black
holes throughout any simulation.

2.6.3 Gravitational Wave Extraction

The primary goal of numerical relativity simulations is theextraction of gravitational
waveforms for analysis as template waveforms for gravitational wave detector detection
pipelines. There are multiple ways to extract the radiationcomponent from the numer-
ical metric data. In this section I will explain how we extract the waveforms by using
a Newman-Penrose [73] null tetrad to represent the metric toextract theΨ4 component
of the Weyl tensor and how we relate that toh+ andh× polarizations of the metric per-
turbation waveforms. Second I will show another approach bywhich we treath+ and
h× as linear perturbations on a Schwarzschild solution to extract the radiation data via
the Regge Wheeler [74] and Zerilli [75] radiation equations[76]. Both of the methods
described in this section were used for most of the black holesimulations discussed in
this dissertation, and have been shown to give comparable results to high accuracy (see
Appendix [A.6] for the details of this comparison).

Weyl

While the tensor components evolved in an ADM evolution of Einstein’s equations carry
the geometrical information which define the spacetime, they do not directly provide
an interpretation of the geometrical content of a spacetime. The problem is that the
tensor components are not coordinate independent, the value of each component (for
a non-vanishing tensor) can vary arbitrarily with coordinate change. We must calcu-
late several more geometrically defined quantities. The complex valued Weyl scalars,
Ψ0,Ψ1,Ψ2,Ψ3,Ψ4 are coordinate independent, but do depend on a choice of tetrad (an
orthonormal complex basis for the tangent space of the spacetime) in which they are eval-
uated. In order to analyze the gravitational radiation being emitted by the simulated binary
system, we must choose a null tetrad to decompose the gravitational radiation. This ra-
diation is contained in the Weyl tensor,Cabcd, so we would like a tetrad that separates
the radiation part of the Weyl tensor from the non-radiationcontent. The tetrad is defined
in relation to the numerical grid coordinates, but the resulting Ψ’s are less sensitive to
coordinate freedom.

The Newman-Penrose formalism was developed to introduce spinor calculus into gen-
eral relativity [73]. It gives us a special kind of tetrad calculus based on null geodesics
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through a specified choice of basis vectors. For this discussion, we choose the following
tetrad: given̂τ , the time-like unit vector normal to a given hypersurface and r̂, the radial
unit vector. Using spherical coordinates we obtain the tetrad

−→
l ≡ 1√

2
(τ̂ − r̂) , −→n ≡ 1√

2
(τ̂ + r̂) , (2.101)

−→m ≡ 1√
2
(θ̂ − iφ̂) ,

−→̄
m ≡ 1√

2
(θ̂ + iφ̂) ,

where
−→
l and−→n are the in-going and outgoing null vectors respectively, and −→m and

−→̄
m

are the complex null vectors with the standard spherical metric

ds2 = −dτ2 + dr2 + r2(dθ2 + sin2θdψ2). (2.102)

The orthogonality relations of this tetrad are

−→
l · −→l = −→n · −→n = −→m · −→m = −→m · −→̄m = 0 , (2.103)
−→
l · −→n = −−→m · −→̄m = −1 ,
−→
l · −→m =

−→
l · −→̄m = −→n · −→m = −→n · −→̄m = 0 ,

so that in the spacetime metric can be described as

gab = 2m(am̄b) − 2n(alb)

In specifying a tetrad of the form [2.101] we have reduced the number of degrees of
freedom associated with the choice of orthonormal tetrad from six to three. The remaining
three degrees of freedom are fixed by specifying the directions of r̂ and the component of
θ̂ orthogonal tôr relative to the local metric. The rest of the components ofr̂, θ̂, andφ̂
are fixed by orthonormalization.

The Ψ’s are defined as components of the Weyl tensorCabcd which in the vacuum
case is identical to the antisymmetrised Riemann tensorRabcd. In terms of this tetrad, the
complex Weyl scalarsΨ is given by

Ψ0 = Cabcd l
amb lcmd

Ψ1 = Cabcd l
a nb lcmd

Ψ2 = Cabcd l
a nbmc m̄d

Ψ3 = Cabcd n
a lb nc m̄d

Ψ4 = Cabcd n
a m̄b nc m̄d .

Here, the Weyl scalarΨ0 is in-going gravitational (transverse) radiation,Ψ1 is the outgo-
ing gauge (longitudinal) radiation,Ψ2 is the static gravitational (“Coulomb”) field,Ψ3 is
the in-going gauge (longitudinal) radiation, andΨ4 is the out-going gravitational (trans-
verse) radiation. EachΨn should have a1/r1+n falloff.

With a tetrad of the form [2.101], these components can be expressed directly in terms
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of spatial quantities.

Ψ0 = Cabm
amb

Ψ1 =
1√
2
Cabm

a r̂b

Ψ2 =
1

2
Cab r̂

a r̂b

Ψ3 =
−1√

2
Cab m̄

a r̂b

Ψ4 = Cab m̄
a m̄b

wherema is as defined above.Cab is the symmetric, trace-free, complex-valued tensor

Cab = Rab −KKab +K c
a Kcb − iǫ cda ∇dKbc

given in terms of the Ricci curvatureRab of thespatialmetric and the extrinsic curvature
Kab. OnlyΨ4 is of interest for our purpose here because it contains the outbound radiation
content of the system.Ψ4 can be related to the gravitational radiation in the following
way: in the transverse-traceless (TT) gauge, in the conformally flat limit as we approach
infinity

1

4
(ḧTT
θ̂θ̂

− ḧTT
φ̂φ̂

) = −Rτ̂ θ̂τ̂ θ̂ = −Rτ̂ φ̂r̂φ̂ = −Rr̂θ̂r̂θ̂ (2.104)

= Rτ̂ φ̂τ̂ φ̂ = Rτ̂ θ̂r̂θ̂ = Rr̂φ̂r̂φ̂ ,

1

2
ḧTT
θ̂φ̂

= −Rτ̂ θ̂τ̂ φ̂ = −Rr̂θ̂r̂φ̂ = Rτ̂ θ̂r̂φ̂ = Rr̂θ̂τ̂ φ̂ . (2.105)

We can then set theh+ andh× polarizations of the radiation to

ḧ+ =
1

2
(ḧTT
θ̂θ̂

− ḧTT
φ̂φ̂

) , ḧ× = ḧTT
θ̂φ̂

. (2.106)

Finally, we can use the equality of the Riemann and Weyl tensors in vacuum, to yield a
relationship betweenΨ4 and the radiation,Rabcd = Cabcd(Gµν = 0), to yield the final
relation betweenΨ4 and the radiation as a metric perturbation in terms of polarizations

Ψ4 = −(ḧ+ − iḧ×) . (2.107)

The final step in analyzing the gravitational radiation using Ψ4 is to decompose it into
spherical harmonic components. This is a useful way to gain insight into the physical
processes at work, as some processes may excite specific modes, and therefore can most
effectively be analyzed individually. For instance, quadrupole radiation emits at twice the
orbital frequency, and so will be constrained to theℓ = 2,m = ±2 harmonic modes.
Since two factors of

−→̄
m appear in the definition ofΨ4, and each carries a spin-weight

of −1, we decomposeΨ4 in terms of spin-weight−2 spherical harmonics−2Yℓm(θ, φ)
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given by

±2Yℓm(θ, φ) =

[
(ℓ− 2)!

(ℓ+ 2)!

]1/2 [
α±

(ℓm)(θ)}Yℓm(θ, φ) + β±(ℓm)(θ)Y(ℓ−1)m(θ, φ)
]

(2.108)

for l ≥ 2 and| m |≤ l, and with the functional coefficients

α±
(ℓm)(θ) =

2m2 − ℓ(ℓ+ 1)

sin θ2
∓ 2m(ℓ− 1)

cotθ

sin θ
+ ℓ(ℓ− 1)cot2 , (2.109)

β±(ℓm)(θ) = 2

[
2ℓ+ 1

2ℓ− 1
(ℓ2 −m2)

]1/2(
± m

sin θ2
+
cotθ

sin θ

)
. (2.110)

We can now decompose the dimensionless Weyl scalarΨ4, yielding

Ψ4(t,
−→r ) =

1

Mr

∞∑

ℓ=2

ℓ∑

m=−ℓ

−2Cℓm(t)−2Yℓm(θ, φ) , (2.111)

whereM is the total system mass, andr is the radial distance to the binary center of
mass. The Newman Penrose formalism turns out to be an ideal framework for perturbative
studies in general relativity. Price first showed thatΨ4 andΨ0 could be used to described
all non-trivial perturbations of a Schwarzschild black hole [18]. Teukolsky showed that
the same is also true for Kerr spacetimes for any arbitrary spin [77].

This decomposition assumes a flat space background, and so the extraction surface
of the radiation must be adequately far from the coalescing black hole binary to not be
affected significantly by its gravitational potential. This is an important consideration in
numerical relativity, as it requires the domain of evolution for all of our simulations to be
sufficiently large in size that we may choose radiation extraction spheres on which a flat
background metric is not a terribly inaccurate assumption,but large grids for numerical
evolutions require a lot of computational power. Thus, accuracy requirements and effi-
ciency requirements must be balanced. The area with the mostdynamics is in the region
closest to the two black holes, we require a high grid resolution near the holes, but as grav-
itational radiation is long wave length and extracted on a fixed radius sphere, we do not
need such high resolution far out near our radiation extraction spheres. Therefore mesh
refinement is used to layer grid of different resolutions to match the accuracy requirements
of the different regions of our evolution domain, while not causing exponential drops in
computational efficiency. We will discuss this technique insection [2.7]

Zerilli

Another approach to extract gravitational radiation data from numerical simulations is
to calculate first order gauge invariant waveforms from a numerical spacetime, under
the basic assumption that, at the spheres of extraction, thespacetime is approximately
Schwarzschild. The stability problem for a Schwarzschild black hole in the form of a
perturbation analysis on a “pure metric” was first presentedby Regge and Wheeler in
1957 [74]. One result of this work was the formulation of a gauge transformation that
allows a complete radial/angular separation of the Einstein equations for even and odd
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parities. So for some perturbation the Einstein equations

δGµν = δRµν = δΓρµν,ρ − Γρµρ,ν , (2.112)

δΓijk =
1

2
gil(hjl,k + hkl,j − hjk,l) , (2.113)

whereh ≪ 1 is the perturbation tensor, andδΓ, δR, δG are the perturbed parts of the
affine connections, Ricci, and Einstein tensors.

The Regge-Wheeler and Zerilli equations each describe one of the two degrees of
freedom of linearized gravity as it propagates in a black hole background. Odd-parity per-
turbations are governed by the Regge-Wheeler equation, andeven parity perturbations by
the Zerilli equation. Odd-parity perturbations are often referred to asaxial perturbations
because they drag the inertial frame and thus cause rotation. Even-parity perturbations
are often referred to aspolar perturbationsas they cause no such effects.

To begin we assume a spacetimeγαβ which can be written as a Schwarzschild back-
groundγSchwarzαβ with perturbationshαβ :

γαβ = γSchwarzαβ + hαβ (2.114)

with

{γSchwarzαβ }(t, r, θ, φ) =




−S 0 0 0
0 S−1 0 0
0 0 r2 0
0 0 0 r2 sin2 θ


 S(r) = 1− 2M

r
(2.115)

Since we are considering perturbations in which the background spacetime is expressed
by the Schwarzschild metric it makes sense to expand the perturbations in spherical har-
monics. The three-metric perturbationsγij can be decomposed using spherical harmonics,
Yℓm into γℓmij (t, r) where

γij(t, r, θ, φ) =
∞∑

ℓ=0

ℓ∑

m=−ℓ

γℓmij (t, r) (2.116)

and

γij(t, r, θ, φ) =

6∑

k=0

pk(t, r)Vk(θ, φ) (2.117)

where{Vk} is some basis for tensors on a two-sphere in three-dimensional Euclidean
space. In Schwarzschild coordinates, the Regge Wheeler andZerilli equations may be
written

∂2
t Ψ

(o)
ℓm − ∂2

rΨ
(o)
ℓm + V

(o)
ℓ Ψ

(o)
ℓm = S

(o)
ℓm , (2.118)

∂2
t Ψ

(e)
ℓm − ∂2

rΨ
(e)
ℓm + V

(e)
ℓ Ψ

(e)
ℓm = S

(e)
ℓm , (2.119)

respectively, whereS(o) is the Regge-Wheeler source function,S(e) is the Zerilli source
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function,V (o)
ℓ areV (e)

ℓ are the Regge-Wheeler and Zerilli potential functions. From Ψ
(o)
lm

andΨ
(e)
lm we obtain the gravitational wave amplitude

h+ − ih× =
1

r

∑

l,m

√
(ℓ+ 2)!

(ℓ− 2)!
(Ψ

(e)
ℓm + Ψ

(o)
ℓm)−2Y

ℓm(θ, φ) + O(
1

r2
) (2.120)

Working backwards we can use this formalism to extract the gravitational wave data from
Regge Wheeler and Zerilli-Moncrief wave equations the perturbations from Schwarzschild
on some extraction sphere according to even and odd harmonics.

Working with the Regge-Wheeler basis the three-metric is then expanded in terms of
the (six) standard Regge-Wheeler functions{c×ℓm1 , c×ℓm2 , h+ℓm

1 ,H+ℓm
2 ,K+ℓm, G+ℓm}

[74], [76]. Where each of the functions is eitherodd(×) or even(+) parity

γlmij = c×ℓm1 (ê1)
ℓm
ij + c×ℓm2 (ê2)

ℓm
ij + h+ℓm

1 (f̂1)
ℓm
ij

+ A2H+ℓm
2 (f̂2)

ℓm
ij +R2K+ℓm(f̂3)

ℓm
ij +R2G+ℓm(f̂4)

ℓm
ij (2.121)

which we can write in an expanded form as

γℓmrr = A2H+ℓm
2 Yℓm (2.122)

γℓmrθ = −c×ℓm1

1

sin θ
Yℓm,φ + h+ℓm

1 Yℓm,θ (2.123)

γℓmrψ = c×ℓm1 sin θYℓm,θ + h+ℓm
1 Yℓm,φ (2.124)

γℓmθθ = c×ℓm2

1

sin θ
(Yℓm,θφ − cot θYℓm,φ) +R2K+ℓmYℓm +R2G+ℓmYℓm,θθ(2.125)

γℓmθψ = −c×ℓm2 sin θ
1

2

(
Yℓm,θθ − cot θYℓm,θ −

1

sin2 θ
Yℓm

)
(2.126)

+R2G+ℓm(Yℓm,θφ − cot θYℓm,φ)

γℓmψψ = − sin θc×ℓm2 (Yℓm,θφ − cot θYℓm,φ) +R2K+ℓm sin2 θYℓm (2.127)

+R2G+ℓm(Yℓm,φφ + sin θ cos θYℓm,θ)

A similar decomposition allows the four gauge components ofthe four-metric to be writ-
ten in terms ofthreeeven-parity variables{H0,H1, h0} and theoneodd-parity variable
{c0}

γℓmtt = N2H+ℓm
0 Yℓm (2.128)

γℓmtr = H+ℓm
1 Yℓm (2.129)

γℓmtθ = h+ℓm
0 Yℓm,θ − c×ℓm0

1

sin θ
Yℓm,φ (2.130)

γℓmtψ = h+ℓm
0 Yℓm,φ + c×ℓm0 sin θYℓm,θ (2.131)

We can also get the lapse fromγtt = −α2 + βiβ
i. We have

αℓm = −1

2
NH+ℓm

0 Yℓm . (2.132)



41 2.6 Simulation Physics

To distinguish Zerilli and Regge wheeler modes it is useful to also write this with the
perturbation split into even and odd parity parts:

γαβ = γbackgroundαβ +
∑

l,m

γℓm,oαβ +
∑

l,m

γℓm,eαβ

where (dropping some superscripts)

{γoαβ} =




0 0 −c0 1
sin θYℓm,φ c0 sin θYℓm,θ

. 0 −c1 1
sin θYℓm,φ c1 sin θYℓm,θ

. . c2
1

sin θ (Yℓm,θφ − cot θYℓm,φ) c2
1
2

(
1

sin θYℓm,φφ + cos θYℓm,θ − sin θYℓm,θθ
)

. . . c2(− sin θYℓm,θφ + cos θYℓm,φ)




{γeαβ} =




N2H0Yℓm H1Yℓm h0Yℓm,θ h0Yℓm,φ
. A2H2Yℓm h1Yℓm,θ h1Yℓm,φ
. . R2KYℓm + r2GYℓm,θθ R2(Yℓm,θφ − cot θYℓm,φ)
. . . R2K sin2 θYℓm+

R2G(Yℓm,φφ + sin θ cos θYℓm,θ)




For such a Schwarzschild background we can define two unconstrained gauge invari-
ant quantitiesQ×

ℓm = Q×
ℓm(c×ℓm1 , c×ℓm2 ) andQ+

ℓm = Q+
ℓm(K+ℓm, G+ℓm,H+ℓm

2 , h+ℓm
1 ),

which from [78] are

Q×
ℓm =

√
2(l + 2)!

(l − 2)!

[
c×ℓm1 +

1

2

(
∂rc

×ℓm
2 − 2

r
c×ℓm2

)]
S

r
(2.133)

Q+
ℓm =

1

Λ

√
2(l − 1)(l + 2)

l(l + 1)
(4rS2k2 + l(l + 1)rk1) (2.134)

≡ 1

Λ

√
2(l − 1)(l + 2)

l(l + 1)

(
l(l + 1)S(r2∂rG

+ℓm − 2h+ℓm
1 )+ (2.135)

2rS(H+ℓm
2 − r∂rK

+ℓm) + ΛrK+ℓm
)
,

where

k1 = K+ℓm +
S

r
(r2∂rG

+ℓm − 2h+ℓm
1 ) (2.136)

k2 =
1

2S

[
H+ℓm

2 − r∂rk1 −
(

1 − M

rS

)
k1 + S1/2∂r(r

2S1/2∂rG
+ℓm − 2S1/2h+ℓm

1 )

]

≡ 1

2S

[
H2 − rK,r −

r − 3M

r − 2M
K

]
. (2.137)

These quantities only depend on the purely spatial Regge-Wheeler functions, and not the
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gauge parts. These quantities satisfy the wave equations

(∂2
t − ∂2

r∗)Q
×
ℓm + S

[
l(l + 1)

r2
− 6M

r3

]
Q×
ℓm = 0(2.138)

(∂2
t − ∂2

r∗)Q
+
ℓm + S

[
1

Λ2

(
72M3

r5
− (2.139)

12M

r3
(l − 1)(l + 2)

(
1 − 3M

r

))
+
l(l − 1)(l + 1)(l + 2)

r2Λ

]
Q+
ℓm = 0

where

Λ = (l − 1)(l + 2) + 6M/r (2.140)

r∗ = r + 2M ln(r/2M − 1) . (2.141)

We assume that the numerical solution, on a Cartesian grid, is approximately Schwarzschild
on the spheres of constantr =

√
(x2 + y2 + z2) where the waveforms are extracted. The

general procedure is to then project the required metric components, and radial derivatives
of metric components, onto spheres of constant coordinate radius. This radius should be
sufficiently large that Schwarzschild approximation does not cause errors significantly
above numerical error. We may then transform the metric components and their deriva-
tives on the selected two-spheres from Cartesian coordinates into a spherical coordinate
system. We can calculate the physical metric on these spheres for our known conformal
factor. We must then calculate the transformation from the coordinate radius to an areal
radius for each sphere. The areal coordinater̂ of each sphere is calculated by

r̂ = r̂(r) =

[
1

4π

∫ √
γθθγφφdθdφ

]1/2

(2.142)

from which
dr̂

dη
=

1

16πr̂

∫
γθθ,ηγφφ + γθθγφφ,η√

γθθγφφ
dθdφ . (2.143)

From there we can calculate theS factor on each sphere. Combined with the areal radius.

S(r̂) =

(
∂r̂

∂r

)2 ∫
γrr dθdφ (2.144)

This also produces an estimate of the mass.

M(r̂) = r̂
1 − S

2
(2.145)

We can calculate the six Regge-Wheeler variables, and required radial derivatives, on
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these spheres by integration of combinations of the metric components over each sphere.

c×ℓm1 =
1

l(l + 1)

∫
γr̂φY

∗
ℓm,θ − γr̂θY

∗
ℓm,φ

sin θ
dΩ

c×ℓm2 = − 2

l(l + 1)(l − 1)(l + 2)

∫ {(
− 1

sin2 θ
γθθ +

1

sin4 θ
γφφ

)
(sin θY ∗

ℓm,θφ

− cos θY ∗
ℓm,φ) +

1

sin θ
γθφ(Y

∗
ℓm,θθ − cot θY ∗

ℓm,θ −
1

sin2 θ
Y ∗
ℓm,φφ)

}
dΩ

h+ℓm
1 =

1

l(l + 1)

∫ {
γr̂θY

∗
ℓm,θ +

1

sin2 θ
γr̂φY

∗
ℓm,φ

}
dΩ

H+ℓm
2 = S

∫
γr̂r̂Y

∗
ℓmdΩ

K+ℓm =
1

2r̂2

∫ (
γθθ +

1

sin2 θ
γφφ

)
Y ∗
ℓmdΩ

+
1

2r̂2(l − 1)(l + 2)

∫ {(
γθθ −

γφφ

sin2 θ

) (
Y ∗
ℓm,θθ − cot θY ∗

ℓm,θ

− 1

sin2 θ
Y ∗
ℓm,φφ

)
+

4

sin2 θ
γθφ(Y

∗
ℓm,θφ − cot θY ∗

ℓm,φ)

}
dΩ

G+ℓm =
1

r̂2l(l + 1)(l − 1)(l + 2)

∫ {(
γθθ −

γφφ

sin2 θ

) (
Y ∗
ℓm,θθ − cot θY ∗

ℓm,θ

− 1

sin2 θ
Y ∗
ℓm,φφ

)
+

4

sin2 θ
γθφ(Y

∗
ℓm,θφ − cot θY ∗

ℓm,φ)

}
dΩ

where

γr̂r̂ =
∂r

∂r̂

∂r

∂r̂
γrr , γr̂θ =

∂r

∂r̂
γrθ , γr̂φ =

∂r

∂r̂
γrφ . (2.146)

From here we can construct the gauge invariant quantities from these Regge-Wheeler and
Zerilli variables

Q×
ℓm =

√
2(l + 2)!

(l − 2)!

[
c×ℓm1 +

1

2

(
∂r̂c

×ℓm
2 − 2

r̂
c×ℓm2

)]
S

r̂
(2.147)

Q+
ℓm =

√
2(l − 1)(l + 2)

l(l + 1)

(4r̂S2k2 + l(l + 1)r̂k1)

(l − 1)(l + 2) + 6M/r̂
. (2.148)

This formalism is convenient as it gives ush+ andh× already decomposed intoℓ and
m modes with no extra integration stages required. This is a useful way to gain insight
into the physical processes at work, as some processes may excite specific modes, and
therefore can most effectively be analyzed individually. For instance, quadrupole ra-
diation emits at twice the orbital frequency, and so will be constrained mostly to the
ℓ = 2,m = ±2 harmonic modes. This is also a convenient formalism in that with it
we can extract a mass estimate calculated fromgrr, an estimate of ADM mass enclosed
within each two-sphere, and an estimate of momentum at each two-sphere. In Chapter
[5] I will discuss the relative advantages of each of the two gravitational wave extraction
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methods presented in this section.

2.6.4 Proving Well-posedness

For a system of partial differential equations of the form

∂tu = P (D)u , (2.149)

where somen-dimensional vector-valued functionu, and spatial derivative operators de-
fined byD, theinitial valueproblem (IVP) corresponds to finding a solutionu(t, x) start-
ing from some known initial datau(t = 0, x). The concept of awell-posedproblem,
introduced in 1902 by Hadamard [79], is generally understood to satisfy three criteria:

• a solution to the problem exists (existence)

• the solution is unique (uniqueness)

• the solution depends continuously on the intial data (stability).

We may define this third condition of well-posedness for the Cauchy problem as the fol-
lowing [80]

A system of partial differential equations is called well-posed if there exists
constantsK andα, independent of the data, that satisfy

| u(·, t) |< Keαt | u(·, 0) | (2.150)

for all t ≥ 0, where| · | is the norm of the function.

That is to say that the norm of the solution can be bounded by the same exponential for
all initial data.

Attempts to solve ill-posed problems in numerical simulations will result in unstable
solutions, thus well-posedness is not only a mathematical condition, but also significant
for formulating a functioning numerical code. While most physical problems naturally
give well-posed evolution systems, it is not difficult to findrather simple systems which
are not well-posed. One example which closely relates to theproblem of the3 + 1 evolu-
tion equations is the simple system:

∂tu = M∂xu , M =

(
1 1
0 1

)
. (2.151)

If we consider the evolution of a single Fourier mode, and consider the solution

u1 = (ikAt+B)eik(t+x) , u2 = Aeik(t+x) , (2.152)

whereA andB are constants, we see thatu2 is oscillatory in time and, thus, clearly
bounded. However,u1 has an additional linear growth. As the solution cannot be bounded
by an exponential independent of the initial data, because one can always choose ak
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large enough to surpass such a bound, we must then declare thesolution ill-posed. Such
solutions can often appear in 3+1 solutions in numerical relativity. Thus we wish to be
sure we choose a category of evolution equations with solutions which are always well-
posed. One such category of partial differential equationswhich can be shown to be
well-posed under arbitrary conditions are calledhyperbolic.

Hyperbolicity is a necessary condition of well-posedness for the Cauchy problem.
Hyperbolicity is a condition on the matrix of spatial derivatives Aij in the first order
system

∂tu = Aij∇u+B(u) . (2.153)

If all eigenvalues forA are real andA has a complete set of eigenvectors, we say that
the system isstrongly hyperbolic. If all eigenvalues forA are real butA does not have
a complete set of eigenvectors, we say that the system isweakly hyperbolic. It has been
shown that strong hyperbolicity is equivalent to a stringent condition for well-posedness
[81]. This concept may be intuitively understood as a requirement that systems behave
as generalizations of the simple wave equation, that have the property of having finite
propagation speeds, and thus a finite past domain of dependence.

If a system is strongly hyperbolic one can always find a positive definite a Hermitian
matrixH(ni) such that

HP − P THT = HP − P TH = 0 , (2.154)

whereP := Aini for some arbitrary unit vectorni. With this symmetrizerH we then get
a complete set of eigenvectors

Pea = λaea (2.155)

with eigenvalues ofλa. We may say that a system issymmetric hyperbolicif all Ai are
symmetric (i.e.H is independent ofni). Symmetric hyperbolic systems are, thus, clearly
strongly hyperbolic, but not all strongly hyperbolic systems are symmetric. We can then
also definestrictly hyperbolicas one for which all eigenvalues of P are both real and
distinct for allni. This implies that the symbolP may be diagonalized and automatically
strongly hyperbolic.

The importance of the Hermitian symmetrizer in showing well-posedness is related to
the construction of the inner product for solutions of our differential equations

〈u, v〉 := uTHv , (2.156)

| u |2:= 〈u, u〉 := uTHu

which gives theenergy normfor our system of equations. Thus, if we can show that there
is a bound on this energy norm, we show that our system is well-posed. This tool has been
used to show well-posedness for all systems in this thesis for some given assumptions.

A major criticism of the ADM formulation of the Einstein equations is that the evo-
lution equations in this system are only weakly hyperbolic,except under very specific
conditions. However, stable and convergent results have been and continue to be pro-
duced in the BSSN system by applying a system for constraint damping to the right hand
sides of the evolution of the extrinsic curvature equationsand by applying dissipation to
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Figure 2.5: A diagram illustrating the use or artificial time-like outerboundaries,Ω in
spacelike slices of the evolution domain,Σ.

the evolution system. One major advantage of the harmonic formulation of the Einstein
equations is that the evolution equations in this system aremanifestly strongly hyperbolic.
However, gauge specification is less intuitive and techniques such as the moving puncture
intial data are more challenging to implement for harmonic codes.

2.6.5 Boundary Conditions

To accurately study the asymptotic behavior of isolated systems, one needs to approach
infinity. However, as a computer can only differentiate a finite number of points in a finite
amount of real time in the simulation of such numerical systems, to deal with the finite
memory of real computer clusters, we must operate on a finite number grid points. The
simplest and most common approach to this problem in numerical relativity is to truncate
the computational domain we wish to evolve by introducing anartificial time-like outer
boundary at a finite distance from the region of interest in our evolution. The injection of
this artificial boundary introduces an intial boundary value problem (IBVP). That is, we
must solve the problem of well-posedness for this truncatedsystem if we want to maintain
a hyperbolic reduction of the Einstein equations which remains well-posed. This is a
problem to both the mathematical and physical correctness of the numerical solution, as
well as a problem for numerical accuracy. In order for this artificial boundary to work we
need a boundary that:

1. controls incoming radiation,

2. are compatible with the constraints,

3. and are well-posed.

Point1. means that the simulation outer boundaries must be non-reflective and not intro-
duce artificial in-going modes. Point2. means that those boundaries must also correspond
to the same condition as the full system that the constraintsare vanishing. Finally, point
3. means that a unique solution must still exist which is continuously dependent on the
initial data for the full system including the outer boundaries.
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Generically, for such a set of artificial boundaries, the picture we have is that the met-
ric, g is calculated on a manifold,M, with boundaryS∪T and an edgeΣ = S∩T , where
S andT are space- and time- like hypersurfaces respectively forg and intersect on the
spacelike hypersurfaceΣ. We will assume that(M, g) satisfy some global hyperbolicity
and all fields to be smooth.

The first artificial outer boundary treatment has thus far been proposed which satisfies
all of the above requirements for the fully nonlinear systemwas proposed by Friedrich
and Nagy in 1998 [82]. However, this system is very specific and very hard to implement
numerically. There do also exist alternative approaches tofinite radius artificial bound-
aries. It is possible to compactify one’s domain of evolution to include spatial infinity by
a transformation of coordinates. However, given a finite number of points there could be
some numerical error backscattered by the increasing changes in resolution, and the dissi-
pation and damping required can often generate as much erroras artificial boundaries for
an even less efficient system. Another approach is to choose aslicing condition with the
coordinate transformation to instead include null infinity. This problem remains a work
in progress in the field of numerical relativity. Thus, the simplest approach remains the
standard: timelike artificial outer boundaries.

In order to simplify the problem of obtaining well-behaved artificial outer boundaries,
we may make some assumptions and assign some basic conditions. One wants an outgo-
ing radiation boundary condition at an artificial outer boundary for the simulation domain
that is at a sufficiently large radius

• to be causally disconnected from the highly dynamical partsof the simulation,

• which would allow for enough far-out wave extraction radii to accurately extrapo-
late the gravitational waveform at null infinity,

• and which is far enough out to allow for a perturbative treatment for the bound-
aries without becoming reflective, ill-posed, or interfering with the physics of the
simulation.

Given a boundary at such a distance, we may consider a linearized approximant of the
Einstein equations for the outer boundaries of our numerical simulations. Most astro-
physically realistic spacetimes are asymptotically flat. This means that at large distances
from the black holes (or neutron stars or other object of interest) the spacetime is flat plus
some perturbation that falls off as1/r. These perturbations may be waves, gauge modes,
or constraint violating modes that arise from numerical errors, which need to be able to
smoothly leave the evolution domain without backscattering or causing further violation
of the system constraints.

In the past few years there have been many such “linearized” boundary treatments
proposed. Many of which maintain well-posedness and reduceincoming artificial radia-
tion. In 2006 Kreiss and Winicour proposed a method for the Harmonic reduction of the
Einstein equations that is well-posed and constraint preserving for the 1st order system
[83] without requiring linearisation, only assuming that the boundaries are in the constant
coefficient limit. In 2007 Buchman and Sarbach proposed an approximation that works
by studying the reflection from a Psi-freezing constraint preserving outer boundary for an
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analytic problem and then subtracting those modes for corresponding modes in simula-
tions [84]. Similarly Rinne proposed conditions for the first order harmonic system that
control incoming radiation by specifying data for the incoming fields of the Weyl tensor
[85]. In this thesis I propose two more sets of well-posed constraint preserving boundaries
for the ’Generalized harmonic’ and BSSN evolution systems.

In standard simulations we often use much simplerad hocconditions, simply using
the fact that the boundaries are far enough away to be causally disconnected from the
simulation. This, of course, limits the time that the simulation can remain accurate in the
region of interest before it is saturated by noise from the outer boundaries, and pushing the
boundaries far away is extremely computationally expensive. So the use of accurate, well-
posed, and constraint preserving boundary conditions becomes more necessary as modern
simulations become more stable and more often required to simulate longer physical times
with greater accuracy and efficiency, so to be completed in a reasonable amount of time.

For simulations with causally disconnected outer boundaries, a simple “naive” bound-
ary condition used in many primitive simulations are calledradiative boundary condi-
tions, called such because it allows incident radiation to flow smoothly out of the simula-
tion grid. Suchad hocconditions work on the assumption that far away all fields behave
a outward travelling spherical wavesf ∼ f(0) + u(r − vt)/r. An example of a radiative
boundary condition is

f = f0 +
u(r − vt)

r
+
h(r + vt)

r
(2.157)

for some outgoing and in-going functionsu andh, and wave speedv, and assuming a1/r
falloff for outgoing waves. This leads to the differential equation

xi

r

∂f

∂t
+ v

∂f

∂xi
+
vxi

r2
(f − f0) = H

vxi

r2
(2.158)

wherexi is the normal direction to the boundary, andH = 2dh(s)/ds.

These radiative boundary conditions work under the assumptions that:

1. the spacetime is asymptotically flat,

2. the sources of the gravitational field are localized in a small neighborhood far from
the boundaries,

3. the shift is small enough at the boundary location that characteristic speeds may be
neglected,

4. all fields move at or below the speed of light,

5. and there are no in-going fields at the boundary location.

Even if all of these assumptions were perfectly valid, such conditions do nothing to en-
force preservation of the physical or coordinate constraints. Thus, even in an ideal, shift-
free, linear wave-toy case it would be important to place theboundary far enough away
to prevent incoming constraint violations from the boundary from interfering with the
simulation results.
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In addition to the problem ofad hocconditions causing violations of the physical
and coordinate constraints, the second important questionfor stability and accuracy of
artificial boundaries is that of well-posedness. In the Einstein equations we have source
terms, but these are typically quadratic in quantities thatdrop off to small values at large
radii, and can be ignored at the boundaries. Also, not all fields in the Einstein equations
propagate with the same speed, and thus we must be careful in our choice ofv. However,
in the BSSN system all eigenfields propagate along timelinesor at the gauge speed. We
can thus assign all speeds to1 except the conformal factor and extrinsic curvature. For a
second order ADM type reduction of the wave equation (and forthe Einstein equations)
we find that radiative boundary conditions are not well-posed in the spatial derivatives of
the metric.

If, as in Section [2.6.4], we consider an evolution systems such as

∂tu = M i∂iu , (2.159)

where we constrain the domain of dependence to the region−→x ∈ Ω, and construct a prin-
cipal symbolP (ni) = M ini. If we again assume that the system is symmetric hyperbolic
with a Hermitian matrix such thatHP = P TH then taking the energy norm gives

E(t) =

∫

Ω
u†HudV , (2.160)

and taking the time derivative, we obtain

dE

dt
= −

∫

Ω
∂i(u

†HM iu)dV . (2.161)

Finally, by applying divergence theorem we obtain

dE

dt
= −

∫

∂Ω
(u†HM iu)nidA = −

∫

∂Ω
(u†HPu)dA . (2.162)

Thus, the well-posedness of our problem depends on the flux through the boundary∂Ω,
and incoming fields must be bounded to have a bound on the energy growth of the system.

Boundary conditions in which one sets the inward eigenfieldsproportional to some
small factor,S, times outward eigenfields are calledmaximally dissipativeboundary con-
ditions. We can generalize these and add some predefined function for incoming fields,
g(t). If S is set to zero we call theseSommerfeld-typeboundary conditions,S = −1 are
calledDirichlet, S = 1 are calledNewmann typeboundary conditions. Newmann and
Dirichlet are reflective conditions forg(t) = 0. Thus, Sommerfeld-type boundaries are a
natural choice for unknown and assumed to be negligible incoming fields. More gener-
ally, one may need to consider fields tangential to the boundary as well, in order to obtain
well-posedness. This will be discussed in Section [3.2].

Additionally, many physical simulations allow some symmetries, which may be ex-
ploited to simplify the problem and improve computational efficiency. For example, it
might be possible to simulate a rotating star by ‘slicing’ the space in half through the
equatorial plane, simulating only one half, and placing a reflection boundary condition on
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the slicing plane, and thus we only have to evolve the simulation for half the number of
grid points. Additionally, we might want to assume that thisstar has rotational symmetry
about the axis of rotation of the star. In that case, it would be sufficient to simulate only
one half of theφ = const plane of the star, and we only have to evolve one fourth of
the simulation grid points. To increase efficiency in simulations we often take advantage
of this in our choice of boundaries for the simulation domain. Within a simulation we
may apply different conditions to different boundary faces. Rotating or reflectivesym-
metryboundary conditions may be applied on some faces, and other physical boundary
conditions on the other faces.

In Chapter [3] I will discuss boundary conditions I developed for the second order
harmonic formulation of the Einstein equations, which are both well-posed and constraint
preserving, and show that these improve constraint preservation, accuracy and stability
over the bulk domain, relative to simple naive Sommerfeld-type boundaries. I will also
present a set of constraint-preserving boundary conditions for the BSSN system.

2.7 Running Numerical Simulations

As is clear from the abundant amount of background information required to explain the
workings of the numerical simulations involved in this thesis, it is clear that the execu-
tion of 3D relativistic numerical simulations of black holespacetimes is a daunting and
involved task. The focus of my work for this dissertation hasbeen on the performance, ac-
curacy, and well-posedness of such simulations, followed by parameter studies performed
with this code with an eye on use of waveforms for GW detector data analysis. In order to
perform the simulations involved here, and test the methodsproposed, I used the Cactus
computational toolkit.

The only codes I have myself contributed to in a significant portion (or all) of the
development of are: the averaged ICN scheme, the initial data solver for Trumpet initial
data, the mass solver for puncture initial data, the constraint preserving BSSN boundary
conditions, the Padé extrapolation scheme for excision horizons, and most significantly
the SBP and constraint preserving SBP boundary conditions for the Harmonic reduction
of the Einstein equations. In much smaller proportion, I have contributed to: the devel-
opment of the AEIHarmonic code for harmonic evolutions and the choice and implemen-
tation of gauges therein. AEIHarmonic was the project of Bela Szilagyi and his support
in the encouraging implementation of my boundary conditions in his code was invaluable
[40].

The BSSN evolution codes I used were developed by Miguel Alcubierre, Bernd Brüg-
mann, Gabrielle Allen, and Denis Pollney [86, 87]. The Puncture initial data solver was
written by Marcus Ansorg, Erik Schnetter, and Frank Loeffler, the PN initial data solver
was a group effort described in [88]. The symmetry, interpolation, input and output, and
coordinate algorithms are a major part of the Cactus computational toolkit described in
[89–91]. Finally the mesh refinement code used is a package called Carpet and was de-
veloped and heavily supported by Erik Schnetter [92,93].
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2.7.1 Cactus and Carpet

The Cactus computational toolkit is a modular component-based computational frame-
work for the development of applications for the solution complex multi-physics com-
putational problems. The Cactus framework consists of a central infrastructure called
the “flesh”, which consists of a module manager; and the components called “thorns”
which can perform tasks such as setting up a computational grid, setting up coordinate
systems, defining boundary and initial conditions, solvingpartial differential equations,
and generating input and output. The Cactus Computational Toolkit provides a standard
set of distributed thorns (such as grid setup, input and output and most of the previously
listed functions) to provide basic functionality for the solution of computational physics
problems.

Cactus provides the basic parallel framework that supportsseveral different codes
in the numerical relativity community used for modeling black holes, neutron stars and
gravitational waves. The code employs a 3+1 decomposition of the Einstein equations
described in Section [2.3] from [26,94]. The equations are discretized using fourth order
finite differences described in Section [2.5.1] with adaptive mesh refinement and using
Runge-Kutta time integrators explained in Section [2.5.2].

The time evolution equations are formulated using a variantof the BSSN formulation
described in [95] and coordinate conditions described in [33] and [60]. These are a
set of 25 coupled partial differential equations which are first order in time and second
order in space. The most important variable describing the geometry is the three-metric
gij , which is a symmetric positive definite tensor defined everywhere in space, defining
a scalar product which defines distances and angles. The codecontains the formulation
and discretisation of the right hand sides of the time evolution equations. Initial data and
many analysis tools, as well as time integration and parallelization, are handled by other
thorns already in Cactus. The current state of the time evolution, i.e., the three-metric
gij and other variables, are communicated into and out of Cactususing a standard set of
Cactus variables. Thus it is possible to use various pre-existing Cactus thorns with the
thorns written for this thesis, such as initial data solversand analysis tools.

Cactus provides infrastructure components for storage handling, parallelization, mesh
refinement, and I/O methods are implemented by thorns in the same way as the computa-
tional physics thorns. Carpet [93] is a driver developed by Erik Schnetter that implements
Berger-Oliger mesh refinement [96] to set up the computational grid variables used in the
simulations in this thesis. Carpet ‘refines’ parts of the simulation domain by factors of two
at prescribed distances from prescribed centers. Thus allowing us to place high resolution
grid around the areas of interest in our simulation, while evolving low resolution grids
in the outer areas of the simulation where spacetime is relatively flat and approximately
linear. This significantly reduces the required memory and computational time for our
simulations.

With these tools, I was able to implement my methods derived in the following Chap-
ters as ’thorns’ and run simulations of a variety of initial data, including binary black
hole simulations. I was able to run these simulations with initial data derived from quasi-
circular and post-Newtonian solvers in cactus and Mathematica respectively to simulate a
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wide variety of binary black hole initial parameters some ofwhich are described in Table
[4.2].

2.8 Outline of Thesis

This background section should provide enough foundation to understand the research I
have performed for this thesis:

• In Chapter [3] I will explain the derivation, implementation and testingof a set
of well-posed constraint preserving boundary conditions for both the BSSN and
Harmonic evolution systems described in sections [2.3.3] and [2.3.2]. The back-
ground for the details of well-posedness and the approach toartificial boundaries
this section may be found in Section [2.6.4] and Section [2.6.5] respectively. The
discrete nature of numerical simulations described in sections [2.5.2] and [2.5.1]
should provide the background necessary to understand the importance of proving
stability for the fully discrete system as well as for the continuum solution. I will
show the results of tests which clearly show the advantages of well-posed boundary
conditions and differencing techniques for efficient numerical simulations of any
relativistic spacetimes.

• In Chapter [4] is discuss the results of a study of the parameter space of binary
black hole simulations (spins and mass ratios). Simulations were strategically run
in sequences with data throughout this parameter space. We extracted the final spins
and recoil velocity for these simulations and fit to this dataa phenomenological
formula to predict the final spin and kick of a merged black hole from arbitrary
binary initial data. The background provided in sections [2.1], [2.2], and all of
[2.6] should provide most of the background required to understand the work in
this chapter.

• Finally, in Chapter [5] I will discuss the use of the waveforms extracted from the
simulations described in Chapter [4] to determine the effect of black hole spin on the
signal to noise ratio of waveforms in various gravitationalwave detector pipelines
for a range of detectable binary masses. I will also discuss the use of similar wave-
forms combined with post-Newtonian inspiral waveforms to fit a set of analytical
inspiral-merger-ringdown waveforms to take into account spin effects in binary in-
spiral and merger.

I will conclude this thesis with a summary of my findings for all of the aforemen-
tioned chapters, and ideas on how to progress and future outlook. Followed by relevant
appendices for the results chapter and a bibliography of references.

2.8.1 Units and Notation

First, a note about units before I go into a discussion of my results and research. Unless
otherwise noted, geometrized units are used throughout this thesis. This meansG = c =
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1. This allows us to express any observable quantities in terms of the total mass of the
system,M , given that all observables for the black hole binary solution scale invariantly
with the total system mass. Two convenient conversion factors are1M⊙ = 5 × 10−6 s
for time measurements and1M⊙ = 1.5 km for distance measurements.

Greek indices are used to indicate a spacetime quantity, whereas Roman indices indi-
cate a purely spatial quantity. This distinction is also made using a preceding parentheti-
cally enclosed superscript of “3” for spatial quantities and “4” for space-time quantities,
for example,(3)gij and (4)gµν, respectively. However, in cases such as the examples
given where the index convention specifies the dimensionality of the object and no fur-
ther identification is needed, the superscript is omitted. Also, the metric signature will be
(−1, 1, 1, 1).

Partial derivatives are interchangeably denoted∂f
∂x , ∂if , or f,i depending on conve-

nience and clarity.
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Chapter 3

Boundary conditions

The box was a universe, a poem, frozen on the boundaries of human experi-
ence.

William Gibson

In numerical relativity, one commonly solves the Einstein equations in a bounded do-
main, and the question is then born about what boundary conditions ought to be provided
at this artificial outer boundary. As explained in Section [2.6.5], specifying boundary
conditions continues to be a challenge in numerical relativity in order to obtain a long
time convergent numerical simulation of the Einstein equations in domains with artificial
outer boundaries. The particular conditions that are enforced ideally satisfy a number of
properties. Most importantly, in order to ensure stabilityof the system, they should be
compatible with the interior evolution equations so that the discretised system forms a
well-posedinitial-boundary-value problem (IBVP). Secondly, they should take into ac-
count the fact that Einstein evolutions always involve constraint equations as well as time
evolution equations, and satisfy the constraints at all times. Otherwise, constraint viola-
tions introduced by the boundaries are likely to drive the evolution away from an Einstein
solution. Finally, the boundary conditions should be compatible with physical and numer-
ical considerations affecting the accuracy of the solution: they should be transparent to
outgoing radiation, and restrict the amount of spurious incoming radiation from beyond
the computational domain, which is assumed to contain all ofthe dynamics of interest.

Finding appropriate boundary conditions that lead to a well-posed evolution system
and maintain preservation of the constraints of the system is a difficult problem. It has
been a subject of intense investigation in recent years and has been a major focus of my
thesis research. In this chapter I present well-posed constraint preserving boundaries for
the harmonic formulation, and a stable and constraint preserving system for conformally
flat spacetimes in the BSSN formulation (introduced in in Section [2.3]) of the Einstein
equations in 2nd order form. I present the derivation of these conditions, prove mathemat-
ically their well-posedness, and for the harmonic system I follow with thorough test of the
well-posedness, convergence, stability, and constraint preservation of these conditions in
numerical simulations of non-linear spacetimes.

55
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3.1 Boundaries for the Harmonic Formulation

One of the challenges of numerical relativity is choosing a formalism to write the field
equations that allows for long-term stable numerical evolution. In Section [2.3.3] I show
the derivation of the harmonic coordinate condition,�xµ = 0 for the Einstein equations
and explained why they are a practical set of evolution equations for numerical relativity
simulations because, when written with this condition imposed, they take on a mathemat-
ically appealing form such that the principle part of the evolution equations takes on a
manifestly symmetric hyperbolic form, and the principle part of each PDE satisfied for
each metric componentgµν becomes the scalar wave operator�gµν , allowing for a clear
existence and uniqueness proof. This system gives us four new constraints in addition
to the physical (momentum and Hamiltonian) constraints in the form of the coordinate
conditions. As the unbounded harmonic evolution system canoffer well-posed solutions,
what is left is to derive well-posed and constraint preserving set of conditions for the
imposition of artificial outer boundaries. In this section Iwill explain the derivation, im-
plementation and testing of boundary conditions formulated for the 2nd order harmonic
formulation of the Einstein equations on a finite differenced Cartesian grid.

The approach which I introduce in this section is partially derived from a method first
discussed in a series of related papers by Kreiss, Winicour and collaborators in [47,83,97],
combined with the summation by parts (SBP) energy method discussed in Refs. [98–100].
By deriving energy estimates for the semi-discrete system using the “summation by parts”
rule [3.1.3], one can ensure well-posedness [99, 101–103]. By applyingthis approach to
boundary conditions which are radiation controlling and constraint-preserving, I am able
to construct an IBVP which satisfies all of the above conditions.

The conditions are derived for a harmonic formulation of theEinstein equations which
has been implemented in the code described in [40, 104] with the help of Bela Szilagyi.
The evolution equations of the formulation, given explicitly in Section [2.3.3], are first-
order in time, second-order in space. I approximate these equations using standard finite-
difference techniques, however to ensure a well-posed discrete IBVP, I have worked out
finite-difference operators for this system which satisfy the summation by parts property.
Since the computational domain uses Cartesian coordinateson a cube, I have had to de-
velop consistent operators for the corners and edges, as well. Following the developments
of [83, 105] and [43, 106], I was able to construct boundary conditions of a Sommerfeld
type, which are both well-posed and satisfy both the Einstein and harmonic constraints.

I have used the newly constructed boundary conditions in a number of practical tests
and found them to perform extremely well in comparison with other standard techniques.
Test evolutions include linear and nonlinear waves. In eachcase, the new boundary con-
ditions are found to be more transparent to outgoing waves, as well as better at reducing
the overall constraint violations on the grid. Further, theevolutions are stable against per-
turbations by high-frequency constraint violation (“noise”) added to the data, providing a
strong demonstration of robustness. Tests were also done for black hole space-times. For
head-on collisions and inspiral, the boundary conditions showed improvements in reduc-
ing reflections and constraint preservation, and thus improved the waveform accuracy. I
published many of these results in [107].
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3.1.1 Discretization

I start by introducing the system of evolution equations andnumerical setup to which I
wish to apply the proposed boundary conditions. The numerical implementation of the
harmonic evolution equations in second differential orderin space and first order in time
form (2.46-2.47) from Section [2.3.3]

∂tg̃
µν = −g

it

gtt
∂ig̃

µν +
1

gtt
Qµν , (3.1)

∂tQ
µν = −∂i

((
gij − gitgjt

gtt

)
∂j g̃

µν

)
− ∂i

(
git

gtt
Qµν

)
+ S̃µν(g̃, ∂g̃, F, ∂F ) , (3.2)

follows the “method of lines” approach [2.5.2], which applies to systems which can be
cast in the form of an ordinary differential equation containing some spatial differential
operatorL

∂tq = L(q). (3.3)

The time integration can be carried out using standard methods, such as the Runge-Kutta
algorithm described in Section [2.5.2].

While it is possible to reduce this system to first order in space and time, it may not
be a practical in numerical simulations. A reduction to firstorder in space increases the
solution space leading to new constraints which must be satisfied during the evolution,
and thus to more space for inaccuracy. Thus, I keep the systemsecond order in space
and derive differencing stencils which obey the SBP property and allow us to derive a
well-posed semi-discrete boundary value problem.

For the system of interest in this thesis spatial derivatives on the right-hand-sides
of (3.1-3.2) are computed by finite differencing on a uniformly spaced Cartesian grid.
We introduce a grid of equidistant spatial pointsx = (xi1 , . . . , xid). For this derivation I
assume that in each direction I have the same number of pointsN , andix = 0, . . . , N−1.
I denote the grid spacing byh. I have implemented finite difference stencils which are
fourth-order accurate over the interior grid and second-order accurate at the boundaries.

In the linear coefficient case, if the Cauchy problem is well-posed, as it is for the
first order harmonic system, then the semi-discrete problem(discrete space, continuous
time) is stable for these centered finite differencing stencils. Given that my evolutions are
done with Runge-Kutta methods for time integration, the fully discrete system will remain
well-posed for sufficiently small Courant factors. However, this property does not hold
true for the second order system where second order spatial derivatives appear. In order to
show well-posedness for this semi-discrete system I need toensure that my second order
derivatives also obey additional properties required for well-posedness, and this needs to
be shown explicitly.

As an illustration of the derivation of the finite differencing for second differential
order stencils in our code, we look at a system of partial differential equations, here illus-
trated as

d

dt
v(t, ~x) = Pv(t, ~x), v = (U, V )T , (3.4)
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where~x ∈ ℜ, U : ℜ×ℜd → ℜP , V : ℜ×ℜd → ℜq and

P =

[
Ai∂i +B C

Dij∂ij + Ei∂i + F Gi∂i + J

]
. (3.5)

Here the state vectorv is split into the variables for which only first spatial derivatives
appear,U , and which second appear,V .

Here I will temporarily treat the problem of well-posednessfor second differen-
tial order in space systems in Fourier space. If we define the scalar product(u, v) =∫ b
a u

†vdx, with the norm is‖u‖ = (u, u), then the set of functions{ 1
2π e

i〈~ω,~x〉, ~ω =
(ω1, ω2, . . . , ωd) , ωr} forms the orthonormal basis for the space of square integrable func-
tions. In this space the functionsv(t, ~x) may be represented as

v(t, ~x) = 2π
∑

~ω

ei〈~ω,~x〉v̂(t, ~ω) , (3.6)

wherev̂(t, ~ω) are the Fourier coefficients. By considering the partial derivatives∂i1i2...
operating on the basis vectors12πe

〈~ω,~x〉, one defines the Fourier symbols,∂̂i1i2...in =

(iωi1)(iωi2) . . . (iωin). One can then Fourier transform the system(P → P̂ ) and reduce
the evolution problem to a system of ordinary differential equations (ODEs). It is thus
shown via a first order reduction in Fourier space, that the well-posedness is not influ-
enced by the lower order terms ofP̂ :

P =

[
iω0A

n C
ω2

0D
nn iω0G

n

]
, (3.7)

whereω0 = |~ω|, ωi = ω0ni andMn = Mini. It is shown in Section [2.6.4] that if there
exists a positive definite a Hermitian matrixH(ni) such thatHP − P THT = HP −
P TH = 0 whereP := Aini for some arbitrary unit vectorni, with this symmetrizerH
I then get a complete set of eigenvectorsPea = λaea with eigenvalues ofλa. We may
say that a system issymmetric hyperbolicif all Ai are symmetric (i.e.H is independent
of ni). If there exists a positive constantK, such thatK1Iω0 ≤ H ≤ KIω0 (where
Iω0 = diag(ω2

0Ip, Iq), then the problem is well-posed in the norm

‖v‖2
∂ =

∫ d∑

i=1

|∂iU |2 + |V |2 . (3.8)

Then the problem is also well-posed in the norm|v|H , defined as

‖v‖2
H =

∑

~ω

v̂†Ĥv̂ . (3.9)

On the discrete level a grid function is defined asv = v(t, x, h) and the system above
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becomes

d

dt
v = Pv, v = (U, V )T , (3.10)

P =

[
AiD

(
i1, n) C

DijD
(2,n)
ij + EiD

(1,n)
i + F GiD

(1,n)
i + J

]
. (3.11)

Di andDij are the 2n-accurate centered discrete differencing stencils for first and second
derivative operators. We now perform the same analysis in Fourier space, representing
grid functions in terms of discrete Fourier coefficients. IfI define the discrete scalar
product of two grid functions

(u, v)H = hxhyhz
∑

ijk

σiσjσkuijk · vijk, (3.12)

whereσi, σj , σk are the coefficients of the corresponding inner product in each of the
coordinate directions. The normH is defined such that for a discrete inner product
〈u, v〉H = uTHv, whereH = HT > 0. For diagonalH, the set of the exponen-
tial grid functions{ 1

2πe
i〈ω,x〉, ω = (ω1, ω2, . . . , ωd) , ωr = −N/2 + 1, . . . , N/2} give

an orthonormal basis in the space of the grid functions. The Euclidean scalar product
〈x, y〉 =

∑d
i=1 xiyi, allowing us to decompose a grid functionv(t, x, h) to

v(t, x, h) =
1

(2π)d/2

∑

ω

ei〈ω,x〉v(t, ω, hω). (3.13)

The quantitiesv(t, ω, hω) represent the Fourier coefficients and they satisfy

v(t, ω, hω) =
1

(2π)d/2

∑

x

e−i〈ω,x〉v(t, x, h). (3.14)

The discrete scalar product is then

(v, u)h =
∑

ω

v̂†û , (3.15)

the shift operatorSkj applied to my grid function is

Skj v(t, x, h) = v(t, x′, h) x = (xi1 , . . . , xj + kh, . . . , xid) , (3.16)

and the shift operatorSkj acting on the basisei〈ω,x〉 gives

Skj e
〈ω,x〉 = Ŝkj(hωj)e

〈ω,x〉, Ŝkj (hωj) = eikhω . (3.17)

A finite differencing operatorDj corresponding to themth-order derivative in the
j-direction, consists thus of a linear combination of shift operators such thatDj =
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hm
∑

k akS
k
j . Its Fourier symbolD̂j satisfies

Dje
〈ω,x〉 = h−m

∑

k

ake
ikhωje〈ω,x〉 (3.18)

Similarly, one can introduce the Fourier symbols of mixed derivatives. I can then perform
a first order reduction as before, drop the lower order terms,and get the principle part

P̂ ′ =

[
AiD̂

(1,n)
i C

DijD̂
(2,n)
ij GiD̂

(1,n)
i

]
. (3.19)

As with the continuum, stability can be shown in terms of a symmetrizer,Ĥ. As
in Section [2.6.4], if there exists a positive definite a Hermitian matrixH(ni) such that
HP−P THT = HP−P TH = 0 whereP := Aini for some arbitrary unit vectorni. We
may say that the semi-discrete system issymmetric hyperbolicif all Ai are symmetric (i.e.
H is independent ofni). If there exists a positive constantK, such thatK1I ≤ Ĥ ≤ KI
then the problem is well-posed in the norm

‖v‖2
h,D±

=
d∑

i=1

|D±iU |2h + |V |2h . (3.20)

With these relations I can show well-posedness in both the semi-discrete and the discrete
regime by methods which are direct discrete analogs to the methods used to show well-
posedness for the continuum solution.

3.1.2 Finite Differencing

For the purposes of the simulations for this proposed systemI use finite differencing
operators which obey the summation by parts property as explained in the next section,
and which are weighted upwinded sideways derivatives at or near the boundary. The
finite difference operators using2n+ 1 points separated by a distanceh that approximate
a derivative of orderm can be constructed as in Section [2.5.1] and obeying the properties
described in the previous section. I construct these operators by Taylor expanding the
functionfm,n,s(x) = xn−s(log x)m around a pointx0 = 1 up to the order(x − x0)

2n .
Heres ∈ −n, . . . , n is the offset of these points from symmetry with respect to the center
(s = 0 for centered differencing). The coefficients ofx in this expansion,̄fm,n,s,k, will
be the weights of the points in the differencing stencil. Thegeneral finite differencing
operator is thus a sum over the shift operator

Dm,n,s =

n+s∑

k=−n+s

f̄m,n,s,kS
k . (3.21)

This operator will be accurate to2n+ 1 −m order convergence.
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The centered first and second derivative operators are then

D1,n,s =
1

h

n+s∑

j=−n+s

αn,s,jS
j (3.22)

D1,n =
1

h

n∑

j=1

jβn,j
2

(Sj − S−j) (3.23)

D2,n =
1

h2

n∑

j=0

βn,j(S
j + S−j) (3.24)

where the coefficients are obtained from

αn,s,j =

{
(−1)j+1(n+|s|)!(n−|s|)!
j(n+s−j)!(n−s+j)! j 6= 0

±(Hn−|s| −Hn+|s|) j = 0
(3.25)

and

βn,j =

{
2(−1)j+1 (n)!2

j(n+j)!(n−j)! j ≥ 0

−∑n
j=1 βn,j j = 0 .

(3.26)

Herejβn,j = 2αn,0,j for j ≥ 1 andHn =
∑n

i=1
1
i is the harmonic number. I define

dimensionless finite difference operators

D
(1)
0 =

h

2
(D+ +D−) (3.27)

D
(2)
0 = h(D+ −D−) = h2D+D− , (3.28)

whereD+vi = (vi+1 − vi)/h andD−vi = (vi − vi−1)/h.

In order to maintain numerical stability for nonlinear problems, we add artificial dis-
sipation to the right-hand-sides of the time evolution equations as described in Section
[2.5.3]. This is must be done in a way that the dissipation term converges away fast enough
that it does not change the convergence order of the system. Here I use the Kreiss-Oliger
dissipation operatorD(2m) of order2m, as discussed in Section [2.5.3]

D(2m) = −(−1)m

22m
h2m−1

d∑

j=1

σj(D+j)
m(D−j)

m , (3.29)

for a2m−2 accurate scheme, whereσj ≥ 0 regulates the strength of the dissipation. This
form of numerical dissipation has been proven to be numerically stable for non-constant-
coefficient hyperbolic PDEs [67].

With the differencing operators and relations derived in the two previous sections I can
now proceed in deriving a well-posed boundary treatment fora second order differencing
in space, first order in time harmonic evolution system by setting a bound on the energy
growth of the metric variables and their derivatives for thesemi-discrete system.
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3.1.3 Summation By Parts

In order to ensure the well-posedness of the semi-discrete system, we need to obtain an
estimate on the energy growth of the system, as discussed in Section [2.6.4]. To do this, I
have used difference operatorsD which satisfy the “summation by parts” (SBP) property.
A discrete operator is said to satisfy SBP for a scalar product E = 〈u, v〉 =

∫ b
a u · vdx if

〈u,Dv〉 + 〈v,Du〉 = (u · v) |ba , (3.30)

holds for all functionsu, v in the domain[a, b]. This is the discrete analog of the inte-
gration by parts property for continuous functions. By integrating for the energy estimate
using the SBP property of the difference operators, I ensurethat boundedness properties
of the continuum energy estimate carry over to the discretised system. I can construct
these difference operators, including numerical boundaryconditions in a consistent way,
for the system of equations in (2.41)

∂ρ (gρσ∂σ g̃
µν) = Sµν . (3.31)

I follow the procedure outlined by Strand [102] in constructing finite difference sten-
cilsD of a given order,τ , such that

Du =
du

dx
+ O(hτ ), (3.32)

and which satisfy the SBP property (3.30). Briefly, given a state vectoru = (u0, u1, . . . , un)
T

on n grid points, I construct a finite difference operatorD as a matrix acting onu. The
coefficients ofD can be represented as products of the standard operators

D0xfi,j,k =
1

2h
(fi+1,j,k − fi−1,j,k) ,

D+xfi,j,k =
1

h
(fi+1,j,k − fi,j,k) ,

D−xfi,j,k =
1

h
(fi,j,k − fi−1,j,k) , (3.33)

described more generally in the previous section. They are determined up to the bound-
aries of the domain by solving the set of polynomials

Dxm − dxm

dx
= 0, m = 0, 1, . . . , τ, (3.34)

which establish the order of accuracyτ of the approximation. The SBP rule (3.30) pro-
vides an additional set of restrictions,

〈u,Du〉 = −1

2
u2(0) , (3.35)

and
〈u+ v,D (u+ v)〉h = 〈D (u+ v) , u+ v〉h − (u0 + v0)

2 , (3.36)
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which should hold for allu, v in the half line divided into intervals of lengthh > 0. Fol-
lowing Strand [102], we can solve these conditions explicitly for the stencil coefficients
of the first derivative operatorD and obtain stencils like the ones describes in Sections
[3.1.2] and [3.1.1]. It is trivial to obtain a second derivative operator simply by repeated
application of the derived first derivative operator. However, this results in a very wide
and thus impractical stencil, and instead I use the second derivative SBP operators de-
scribed in [103, 108] and shown to be valid in Section [3.1.2]. The explicit expressions
for the finite difference stencils which I use are given in [40].

The above considerations apply to the construction of difference operators along a
single coordinate direction. I can derive a 3D SBP operator by applying the 1D operator
along each coordinate direction. It can be shown that the resulting operator also satisfies
SBP with respect to a diagonal scalar product

〈u, v〉H = hxhyhz
∑

ijk

σiσjσkuijk · vijk, (3.37)

whereσi, σj , σk are the coefficients of the corresponding inner product in each of the
coordinate directions. The normH is defined such that for a discrete inner product
〈u, v〉H = uTHv, whereH = HT > 0. Note that this is only true if the norm,H,
is diagonal. Here I restrict myself to this case.

3.1.4 Well-posed Boundary Conditions

I have constructed finite differencing operators which satisfy summation by parts, and
thus can use the rule (3.30) as a tool for deriving an energy estimate and ensuring well-
posedness of the semi-discrete system. For the continuum system, I have a well de-
fined energy estimate which can be used to bound solutions. Through use of the SBP-
compatible derivative operators defined in the previous section, I ensure that an energy
estimate also holds for the semi-discrete system. If this energy estimate bounds the norm
of the solution in a resolution independent way, then I have astable semi-discrete system.
Optimally, I would like the norm of the semi-discrete solution to satisfy the same estimate
as the continuum solution.

To establish well-posedness I impose boundary conditions based upon the energy
norm

E = ‖u(t, .)‖2 = 〈u, u〉 =

∫

Ω
u ·Hudx (3.38)

whereu(t, .) is the solution of the IBVP at time t, andH is a symmetric positive definite
matrix on the bounded domainΩ. I require that

E(t) ≤ C(t)E(0) , t ≥ 0 , (3.39)

with C(t) independent of the initial and boundary data, so that the solution is bounded by
the energy at timet = 0 for all t.

As an instructive example, which contains the essential features of the derivation for
the Einstein equations, I derive explicitly the energy estimate for the wave equation with
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shift,

∂2
t u =

(−γij
γtt

∂i∂j − 2
γit

γtt
∂i∂t

)
u. (3.40)

where− γit

γtt is the shiftβi, andβiβj − γij

γtt is the lapse.

I need to ensure that the energy,E(n) = ‖u (·, t) ‖2, satisfies that the energy of the
system is bounded for the duration of the simulation. The time derivative of the energy of
the system can be re-written in semi-discrete form as follows:

d

dt
E =

d

dt

(
‖ut‖2 +

∥∥∥∥−
γij

γtt
uiuj

∥∥∥∥
)

= (〈ut, utt〉 + 〈utt, ut〉) −
γij

γtt
(〈ui, ujt〉 + 〈uit, uj〉) . (3.41)

This is only the energy for the system without the constraints. If the constraints are pre-
served throughout the evolution, then deriving a bound on this energy is proof of stabil-
ity. However, without a bound on the constraint propagationsystem, this well-posedness
proof only holds in the linear regime. Therefore, in the nextsection, I will derive a system
to add constraint preserving terms to the SBP boundary conditions.

In this section my notation will follow that: I will use partial derivative symbols
for continuum equations and subscripts for semi-discrete derivatives. To ensure that this
quantity remains bounded in the semi-discrete case, I determine the energy growth which
arises from the application of my boundary conditions, and remove this via the simultane-
ous approximation term (SAT, or “penalty”) method described in [108]. I use a discrete
second derivative stencil which also obeys SBP and more accurately approximates a sec-
ond derivative than the wide stencil created from applying my first derivative twice as
described in Section [3.1.1].

Since I use differencing operators which obey the SBP condition, we can make use
of Eq. (3.30) to integrate Eq. (3.41). For the wave equation, after some algebra, this
condition gives

d

dt
E = −2

[
γij

γtt
(utuj)

∣∣∣∣
xi=Ni

xi=0

+
γit

γtt
(u2
t )

∣∣∣∣
xi=Ni

xi=0

]
. (3.42)

That is, the change in energy is determined by fluxes at the boundary points,xi = 0 and
xi = Ni.

On the boundary faces, I impose a set of conditions which for the moment I write in a
generic form

[βxi=0∂t + αxi=0∂i + δxi=0] (u− u0) = 0 (3.43)

[βxi=N∂t − αxi=N∂i − δxi=N ] (u− u0) = 0 (3.44)

in terms of free parametersα, β, andδ which are indexed according to the grid face.
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These are substituted into into the estimate, Eq. (3.42), leading to

d

dt
E = −2

[(
αNi

βNi

u2
t −

γit

γtt
u2
t

)∣∣∣∣
xi=Ni

−
(
α0i

β0i

u2
t −

γit

γtt
u2
t

)∣∣∣∣
xi=0

]
, (3.45)

whereηi is the normal to the boundary facei, andu0 are data chosen to be consistent with
the initial data.

The SAT method allows us to choose values for the free parameters in the boundary
terms which conserve the energy in the system. I first write the original shifted wave
equation, Eq. (3.40), in semi-discrete form, explicitly including the boundary terms:

utt = −γ
ij

γtt
H−1D

(2)
ij u− 2

γit

γtt
H−1D

(1)
i ut + τ0i

H−1E0i
(α0i

ut + β0i
Siu+ δ0i

u)

+τNi
H−1ENi

(αNi
ut + βNi

Siu+ δNi
u) . (3.46)

TheEa are vectors of lengthN defined asENi
= (0, 0 . . . 0, 1)⊤ andE0i

= (1, 0 . . . , 0)⊤

to be zero everywhere except at the boundary points.Si are sideways blended finite
differencing stencils satisfying the SBP property, as described in the previous section.

I determine the time dependence of the energy for this new system in order to de-
rive coefficientsτ for my penalty terms which give a well-posed semi-discrete system.
Substituting Eq. (3.46) into Eq. (3.41), and once again making use of the SBP property,
Eq. (3.30), I arrive at

d

dt
E =

(
τNi

αNi
− γit

γtt

)
u⊤t ENi

ut + 2

(
τ0i
α0i

+
γit

γtt

)
u⊤t E0i

ut

+2

(
τNi

βNi
− γij

γtt

)
u⊤t ENi

Siu+ 2

(
τ0i
β0i

+
γij

γtt

)
u⊤t E0i

Siu . (3.47)

The free parametersτ0 andτN can be used to eliminate theu⊤t ENi
Siu terms, by setting

τ0β0 = −γij/γtt andτNβN = γij/γtt. Then, the energy evolves according to

d

dt
E = −2

(
βNi

γit

γtt
− αNi

γij

γtt

)
β−1
Ni
u⊤t ENi

ut

+2

(
β0i

γit

γtt
− α0i

γij

γtt

)
β−1

0i
u⊤t E0i

ut = 0 . (3.48)

The last equality is arrived at after some algebra, substituting the boundary conditions,
Eq. (3.43–3.44), and making use of the original wave equation, Eq. (3.40).
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The resulting semi-discrete evolution equation is given by

utt = −γ
it

γtt
H−1D

(1)
i ut −

γij

γtt
H−1D

(2)
ij u

− γij

γttβ0i

H−1E0i
(α0i

ut + β0i
Siu+ δ0i

u)

+
γij

γttβNi

H−1ENi
(αNi

ut + βNi
Siu+ δ0i

u) , (3.49)

which, as a result of the application of the SAT terms, satisfies the energy conservation
equationdE/dt = 0. This calculation may be found in more detail in the appendix[A.1].

I require that the energy,E(n) = ‖u (·, t) ‖2, satisfies (3.39) for positive times, that is,
for the duration of a simulation the energy is bounded. The use of simultaneous approx-
imation terms (the SAT or ’penalty’) allows us to choose values for the free parameters
in the boundary terms which conserve the energy in the system. I determine the time
dependence of the energy for this system in order to derive coefficients for my penalty
terms at the boundary points. This gives a well-posed semi-discrete system. The corre-
sponding calculation for the Einstein equations, Eq. (2.46–2.47) mirrors this calculation
in Appendix [A.1], except with the inclusion of source terms which do not themselves
modify the boundary treatment. After the calculation described in Appendix [A.2] for the
harmonic system, I obtain the boundary terms by the same approach described above. For
the harmonic system described in Section [2.3.3]

∂tQ
µν =

γit

γtt
Di+Q

µν − (γij +
γitγjt

γtt
)H−1Aijγ

µν (3.50)

with the boundaries obtained in Appendix [A.2] the full system is

∂tQ
µν = −γ

it

γtt
Di+Q

µν − (γij +
γitγjt

γtt
)H−1(Aij + E0 − EN )Si)γ

µν (3.51)

+
2γij

γttβ0
H−1E0i

[(1 +
γit

γtt
)Di+γ

µν − Qµν

γtt
+

2x

r2
(γµν − g0)]

+
2γij

γttβN
H−1ENi

[(1 − γit

γtt
)Di+γ

µν +
Qµν

γtt
+

2x

r2
(γµν − gN )]

For my secondary variableQµν , whereγµν ≡ √−ggµν andQµν = gtα∂αγ
µν .

I apply these penalty terms to my evolution equations in our harmonic formulation
code (AEIHarmonic) and in the next sections, we will test these conditions with and
without the addition of additional constraint preserving conditions which do not effect the
energy boundedness of this system.
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3.1.5 Constraint-Preservation

In ref. [40], I used a somewhat ad-hoc boundary condition, which applies a Sommerfeld-
like dissipative operator to all ten components of the metric

(
∂t + ∂x −

1

r

)
(gµν − gµν0 ) = 0 . (3.52)

This follows the physically motivated reasoning that far away from a source, the evolu-
tion variables each satisfy a generally radial outgoing wavelike behaviour. The condi-
tion is particularly simple to apply, and has been used extensively in evolutions using a
conformal-traceless formulation of the Einstein equations (see, for example, [87]), where
the choice of evolution variables has so far hindered the development of a more rigor-
ous boundary treatment. In fact, in simulations where the boundaries have been pushed
to large distances (for instance through the use of mesh refinement), the condition has
proven to be useful enough to allow for long-term stable evolutions. Eventually, however,
boundary effects do contaminate the interior grid, and can lead to a loss of convergence
or the accuracy required to resolve delicate physical features. The conditions given by
Eq. (3.52) make no effort to satisfy the Einstein constraints, and thus can over time drive
the solution away from a solution of the full Einstein equations.

For the Einstein equations in harmonic form, it is possible to derive consistent bound-
ary conditions by explicitly evaluating the constraint propagation system. This has been
done for the first order harmonic evolution system describedby Lindblom et al. [39], who
have derived consistent conditions based on limiting incoming characteristics.

Alternatively, Kreiss and Winicour [83] have demonstrateda set of Sommerfeld type
boundary conditions, which are strongly well posed, as wellas preserving the harmonic
constraints. The well-posedness follows from results in pseudo-differential theory of
strongly well-posed systems, and applies to a broad class ofconditions. Here I apply
their results directly to the generalized harmonic evolution system used in this section.
The harmonic constraints, Eq. (2.37), provide conditions for the time components of the
metric:

− ∂tg
µt − ∂xg

µx − ∂yg
µy − ∂zg

µz − Fµ = 0 . (3.53)

The remaining metric components are determined by applyingthe Sommerfeld-type con-
dition, Eq. (3.52), in a hierarchical fashion, using previously determined components as
required:

(
∂x + ∂t +

1

r

)(
gAB − gAB0

)
= 0 , (3.54)

(
∂x + ∂t +

1

r

)(
gtA − gxA − gtA0 + gxA0

)
= 0 , (3.55)

(
∂x + ∂t +

1

r

)(
gtt − 2gxt + gxx − gtt0 + 2gxt0 − gxx0

)
= 0 . (3.56)

These particular conditions are chosen to ensure well-posedness of the solution, but are
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not unique. They lead to the following explicit conditions on the positivex boundary:

(∂x + ∂t) g
0µ = ∂xg

0µ − ∂xg
1µ − ∂yg

2µ − ∂zg
3µ − Fµ , (3.57)

(∂x + ∂t) g
11 = (∂x + ∂t)

(
2g01 − g00

)
− 1

r

(
g11 − 2g01 + g00

)

+

(
∂x +

1

r

)(
g11
0 − 2g01

0 + g00
0

)
, (3.58)

(∂x + ∂t) g
1A = (∂x + ∂t)

(
g0A − g0A

0

)

−1

r

(
g1A − g1A

0

)
+

1

r

(
g0A − g0A

0

)
− ∂xg

1A
0 , (3.59)

(∂x + ∂t) g
AB = −1

r

(
gAB − gAB0

)
+ ∂xg

AB
0 . (3.60)

The complete list of conditions can be found in Appendix [A.3].

I combine the results of the previous section (see Appendix)with these constraint
preserving conditions, to arrive at expressions for the evolution equations forQµν from
Eq. (2.47) with the new penalties derived in the appendix and shown in Eq. (A.32),

∂tQ
µν = −

(
gij +

gitgjt

gtt

)
Di±Dj∓g̃

µν − git

gtt
DiQ

µν + S̃µν

+
2gij

gttβ0
H−1E0i

[(
1 +

git

gtt

)
g̃µνt + Si+g̃

µν − pµν
]

+
2gij

gttβN
H−1ENi

[(
1 − git

gtt

)
g̃µνt + Si−g̃

µν − pµν
]
, (3.61)

whereg̃µν =
√−ggµν . and where thepµν are determined by Eqs. (3.57)–(3.60). For

example
p0µ = Si+g̃

0µ − (Si+g̃
iµ +DA+g̃

µA +DB+g̃
µB + Fµ) , (3.62)

corresponds to the constraint conditions in Eqs. (3.57), wherei is the direction outward
from the boundary face,Si± is the stencil for sideways finite differencing on the boundary,
andA, andB are tangent to the face.

3.1.6 Results

The boundary prescription described in the previous section has been implemented for the
harmonic Einstein evolution code (presented in [40] and Section [2.3.3]). I have carried
out tests comparing three boundary configurations. The first, which I refer to as “stan-
dard Sommerfeld” simply applies Eq. (3.52) to each evolution variable on each face of
the cubical evolution domain, which was the boundary implementation used in [40]. The
second (“SAT”) applies the boundary treatment derived in Section [3.1.4], and the third
(“CP-SAT”) improves on this by implementing the constraintpreserving conditions of
Section [3.1.5]. I find that in each case, the SAT and CP-SAT boundary conditions respec-
tively improve on the standard Sommerfeld condition in their ability to reduce boundary
reflections and constraint violations over time.
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Figure 3.1: The evolution ofφ for flat-space wave equations with a constant shift in
thex-direction. As initial data I have used a spherical Gaussianpulse of
amplitude1.0 and width1.0, on a grid8 (121 grid points) units in size.
Thin lines are the Sommerfeld-type boundary conditions without the SAT
terms applied, whereas thick lines use the SAT boundary treatment given
by Eq. (3.49).

Shifted waves

As a first test of the methodologies outlined in the previous section, I consider a simpli-
fied non-relativistic example problem which demonstrates the effectiveness of the SAT
method. One of the challenges of designing boundary treatments that control the energy
growth for black hole space-times in commonly used gauges isthe problem of non-zero
shift. A useful problem which has been used as a toy model for the full Einstein equations
is the shifted scalar wave equation [42,109],

(
∂2
t − 2βi∂i∂t −

(
δij − βiβj

)
∂i∂j

)
φ = 0 , (3.63)

with shift vectorβi = git/gtt (see Eq. (3.40)). In the appendix [A.1.3], I have explicitly
derived the boundary treatment of this problem, which has been implemented in a 3D
evolution code.

In Fig. 3.1, I display results from evolutions of a Gaussian wave packet, for various
constant values of the shift. TheL∞-norm of the energy of the solution is plotted as a
function of time for evolutions using standard Sommerfeld type conditions, Eq. (3.52),
and compared with the SAT conditions derived in Section [3.1.4]. As the waveform im-
pinges on the boundary, there is a certain amount of unphysical reflection, but the energy
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Figure 3.2: The same as in Fig.3.1 but shown in a logarithmic scale for||Φ00||∞ and
on a longer timescale. Note that standard Sommerfeld boundary conditions
are unstable for|βi| > 1.

is largely removed from the grid in steps corresponding to the crossing time, as visible
in Fig. 3.2. The boundary reflections are much lower in the case of the SATboundary
conditions, and the evolution is stable even to superluminal, |βi| > 1, shifts suggesting
that these conditions are stable even for outflow boundaries.

Linear waves

As a first test of the implementation of the constraint preserving boundary conditions
for the full Einstein equations, I have considered low amplitude wave solutions of the
linearized Einstein system. These solutions exhibit non-trivial dynamics which exercise
the boundaries, but for which the source terms of the Einstein equations are negligible.
The particular initial data which I use are the quadrupole Teukolsky waves [110],

ds2 = −dt2 + (1 +Afrr)dr
2 + (2Bfrφ)rdrdθ + (2Bfrθ)r sin θdrdφ (3.64)

+ (1 + Cf
(1)
θθ +Af

(2)
θθ )r2dθ2 + [2(A − 2C)fθφ]r

2 sin θdθdφ

+ (1 + Cf
(1)
φφ +Af

(2)
φφ )r2 sin2 θdφ2 .
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Figure 3.3: TheL2-norm of the Hamiltonian constraint for a Teukolsky wave, compar-
ing my constraint-preserving boundary conditions with thestandard non-
SBP Sommerfeld conditions, as well as the purely SommerfeldSAT algo-
rithm to ensure well-posedness. The boundaries for this simulation are at a
radius of 7M from the center of initial Gaussian pulse.
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with radial dependence given by

A = 3

[
F (2)

r3
+

3F (1)

r4
+

3F

r5

]
, (3.65)

B = −
[
F (3)

r2
+

3F (2)

r3
+

6F (1)

r4
+

6F

r5

]
, (3.66)

C =
1

4

[
F (4)

r
+

2F (3)

r2
+

9F (2)

r3
+

21F (1)

r4
+

21F

r5

]
, (3.67)

F (n) ≡
[
dnF (x)

dxn

]

x=t−r

(3.68)

whereF (x) = F (t − r) described the shape of the out-going wave. The functions

frr, . . . , f
(2)
φφ depend only on the angles(θ, φ) given explicitly in [110] for azimuthal

quantum numberm = −2, . . . , 2. This initial data has been used as a testbed in a number
of numerical studies [111–114]. The particular solution which I use follows Eppley [115]
in combining incoming and outgoing wave packets so as to produce a solution which is
regular everywhere in the space-time.

The overall behaviour of the evolutions using the three boundary conditions is summa-
rized in Fig.3.3, which plots the evolution of theL2-norm of the Hamiltonian constraint
as a function of coordinate time, for a wave of amplitude0.001. In each case, there is
a reduction of the constraint violation as the wave propagates off the grid. In the stan-
dard Sommerfeld case, this quickly saturates at a level of10−7, determined by the finite
differencing resolution. In the case of the SAT boundary conditions, however, the con-
straint violation eventually reaches machine round-off due to the constraint damping in
the interior of the domain. This happens at a much faster ratefor the explicitly constraint
preserving condition (“CP-SAT”) which introduces the modification described in Section
[3.1.5]. It is notable that in this case, the initial boundary reflection, which the standard
Sommerfeld condition shares with the simple SAT treatment,is also absent.

Nonlinear waves

The goal of this boundary treatment is to reduce the errors introduced into the evolu-
tion domain during evolutions of strong field spacetimes involving non-linear waves,
as for instance, generated during binary black hole evolutions. To model this problem
in a simplified setting which does not involve complicationsdue to excision or interior
mesh-refinement boundaries, I have carried out tests using the nonlinear Brill wave solu-
tions [116]. These solutions have been studied in a number ofnumerical contexts, both
as testbeds, as well as exploring the onset of black hole formation [115, 117–120]. The
initial spatial metric takes the form

ds2 = Ψ4[e2q(dρ2 + dz2) + ρ2dφ2], (3.69)



73 3.1 Boundaries for the Harmonic Formulation

Figure 3.4: The L2-norm of the harmonic constraints for a Brill wave of amplitude
0.5, comparing constraint-preserving boundary conditions with the standard
Sommerfeld conditions, as well as the purely Sommerfeld SATalgorithm
to ensure well-posedness. The boundaries in these simulations are also at a
radius of 7M from the center.
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in cylindrical (ρ, φ, z) coordinates. I chooseq of the form of a Gaussian packet centered
at the origin,

q = aρ2e−r
2

, (3.70)

wherea is a parameter which is used to set the overall amplitude of the axisymmetric
wave. Generally I choose a value ofa = 0.5 to construct a wave which is strong, but
not so as to evolve to a black hole. As a result, I expect the initially non-linear solution
generates waves which propagate off the grid leaving behinda flat space-time. As the
boundary data is unknown, I set the data in the boundary conditions to Minkowski space
and rely on the fact that these conditions are non-reflectiveand constraint preserving.

In Fig. 3.5 I show a number of frames from two evolutions, displaying themetricγtt

component at various time instances on a grid7 units in size. In the right column, the
standard Sommerfeld conditions have been used, whereas on the left we have used the
constraint preserving SAT boundary conditions. By the second frame att = 8, the wave
pulse has reached the boundary, and the following frames show the reflected pulse. Qual-
itatively, the CP-SAT boundary conditions show a much smoother profile, with smaller
amplitude features. Byt = 45, the wave has left the grid in the CP-SAT case, to the
extent that it cannot be seen on the linear scale of the figure.In the standard Sommerfeld
case, however, there is still some non-trivial dynamical evolution. A more quantitative
demonstration is shown in Fig.3.4, which plots theL2-norm of the harmonic constraint
C0 as a function of coordinate time for three situations: The standard naive Sommer-
feld boundary conditions (“Sommerfeld”), the SAT boundaryconditions developed in
Sec.3.1.4(“SAT”), and the constrained version of these boundary conditions, following
the prescription of Section [3.1.5] (“CP-SAT”). In the Sommerfeld case, the constraint
violation is entirely reflected by the grid boundaries, and the value remains essentially
constant at its initial value throughout the evolution, even though constraint damping has
been used on the interior code. The SAT boundary conditions,however, do a much bet-
ter job of removing constraint violation from the grid, showing the exponential decrease
with time that is expected from the damped solution. The constraint preserving boundary
conditions show the strongest damping, suggesting that theconstraint violating modes
introduced by these boundary conditions are much smaller than for the SAT case. The
evolution of the other constraint components show the same behaviour.

As a final test of the stability of my boundary prescription, Ihave carried out evo-
lutions of Brill waves for which I have attempted to excite high-frequency error modes
along the lines of the “robust stability” test [121, 122]. This test is a means of determin-
ing whether it is possible for modes of any frequency within any of the grid variables to
exhibit exponential growth during the evolution. On a numerical grid, error modes exist
at fixed frequencies, set by the grid resolution, and the standard test consists of perturbing
each variable at each grid point by a small amount of randomlydetermined amplitude
ǫ. The effect of the random perturbation is to seed modes whichthen have the potential
to grow, if the system is unstable at that frequency. Since being first used in [122] and
proposed as a standard testbed in [121], the test has been used in a number of applications
to demonstrate well-posedness of numerical implementations [85, 121–125]. In Fig.3.6
I applied this test by applying some kernel of random data to all points including the
boundary points. For the SAT methods the random noise gets damped and then the decay
of the energy looks similar to that of the standard brill testin Fig. 3.4. For the standard



75 3.1 Boundaries for the Harmonic Formulation

CP-SAT

-1  0  1  2  3  4  5  6  7 -1 0
 1 2 3 4 5 6 7

-0.2
 0.1
 0.4
 0.7

 1

g00

CP-SAT

-1  0  1  2  3  4  5  6  7 -1 0
 1 2 3 4 5 6 7

-0.2
 0.1
 0.4
 0.7

 1

g00

Sommerfeld

-1  0  1  2  3  4  5  6  7 -1 0
 1 2 3 4 5 6 7

Time=0M

-0.2
 0.1
 0.4
 0.7

 1

g00

Sommerfeld

-1  0  1  2  3  4  5  6  7 -1 0
 1 2 3 4 5 6 7

Time=0M

-0.2
 0.1
 0.4
 0.7

 1

g00

-1  0  1  2  3  4  5  6  7 -1 0
 1 2 3 4 5 6 7-0.08

-0.05
-0.02
 0.01
 0.04

g00

-1  0  1  2  3  4  5  6  7 -1 0
 1 2 3 4 5 6 7-0.08

-0.05
-0.02
 0.01
 0.04

g00

-1  0  1  2  3  4  5  6  7 -1 0
 1 2 3 4 5 6 7

Time=8M

-0.08
-0.05
-0.02
 0.01
 0.04

g00

-1  0  1  2  3  4  5  6  7 -1 0
 1 2 3 4 5 6 7

Time=8M

-0.08
-0.05
-0.02
 0.01
 0.04

g00

-1  0  1  2  3  4  5  6  7 -1 0
 1 2 3 4 5 6 7-0.006

-0.004

-0.002

 0

g00

-1  0  1  2  3  4  5  6  7 -1 0
 1 2 3 4 5 6 7-0.006

-0.004

-0.002

 0

g00

-1  0  1  2  3  4  5  6  7 -1 0
 1 2 3 4 5 6 7

Time=12M

-0.006

-0.004

-0.002

 0

g00

-1  0  1  2  3  4  5  6  7 -1 0
 1 2 3 4 5 6 7

Time=12M

-0.006

-0.004

-0.002

 0

g00

-1  0  1  2  3  4  5  6  7 -1 0
 1 2 3 4 5 6 7-0.008

-0.006
-0.004
-0.002

 0

g00

-1  0  1  2  3  4  5  6  7 -1 0
 1 2 3 4 5 6 7-0.008

-0.006
-0.004
-0.002

 0

g00

-1  0  1  2  3  4  5  6  7 -1 0
 1 2 3 4 5 6 7

Time=45M

-0.008
-0.006
-0.004
-0.002

 0

g00

-1  0  1  2  3  4  5  6  7 -1 0
 1 2 3 4 5 6 7

Time=45M

-0.008
-0.006
-0.004
-0.002

 0

g00

Figure 3.5: Thett component of the metric for a Brill wave of amplitudea = 0.5, com-
paring constraint-preserving boundary conditions with the standard Som-
merfeld conditions. The above plot shows a two-dimensionalcut in the xy
plane at various times. On the right is the evolution of the Brill wave with
constraint-preserving SAT and on the left is the same simulation but with
standard Sommerfeld type boundary conditions.
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Figure 3.6: Evolution ofQ00 component of the harmonic data for a Brill wave perturbed
by random noise of a kernel amplitude ofǫ±0.075, over all the grid points.
This is placed on top of Brill wave initial data with an amplitude ofa = 0.5.
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Figure 3.7: Evolution of theL2-norm of the harmonic constraints for a Brill wave (a =
0.5) perturbed by a checkerboard noise pattern of amplitudeǫ ± 0.1, over
all the grid points, in order to excite the highest frequencygrid mode.

Sommerfeld boundary conditions the evolution becomes unstable at the boundaries.

A variant of this test recognizes that in the case of an ill-posed system, the fastest
exponential growth will result from the highest frequency mode. On a finite-difference
grid, the frequency of this mode is set by the grid spacing. I can excite this mode by
adding perturbations to the data in a “checkerboard” pattern, where neighboring points
receive an opposite perturbation of fixed amplitudeǫ. That is, I choose

ǫijk =

{
+ǫ, for i+ j + k even,
−ǫ, for i+ j + k odd.

(3.71)

In Fig. 3.7 I show the evolution of theL2-norm of theC0 constraint component for
the evolution of ana = 0.5 Brill wave for which each component of the initial data has
been modified according to Eq. (3.71) with ǫ = 0.1. The two versions of the SAT bound-
ary conditions prove to be rather impervious to the initial data perturbation, and display
essentially the same behaviour as in the unperturbed case, Fig. 3.4. It is perhaps notable
that the non-constraint-persevering boundary conditionsshow a slightly slower decay rate
than for the non-perturbed data of Fig.3.4, so that it takes more than100 time units to
reach the level of machine round-off, whereas the constraint preserving boundary condi-
tions reach this level in essentially the same amount of timeas in the unperturbed case
(though with a somewhat different decay profile). The simpleSommerfeld boundary con-
ditions, however, are unable to cope with the initial perturbation and lead to an instability
on a very short timescale.
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Shifted Gauge Waves
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Figure 3.8: The infinity norm of the error iñgxx relative to the exact solution,E , for
2D shifted gauge wave simulations with amplitudeA = 0.01, d = 2, and
boundary widthx, y ∈ [−7, 7]. The resolutions presented here aredx, dy =
0.05, 0.1, 0.2 doubled relative to the next lowest resolution. The solution
with standard boundary conditions blows up at early times and is shown as
the dashed line withdx = 0.1.

An important test of the validity and convergence of any numerical code is a com-
parison against an exact answer. It is important to show thatour codes converge at the
expected rate for the truncation error for changing grid spacing, as discussed in Section
[2.5.1]. For this reason I present here the results of the simulation of a shifted gauge
wave with constraint preserving SAT boundaries at three different resolutions and com-
pare against the exact solution as proof that the harmonic code with these boundary con-
ditions provides a stable and convergent evolution scheme.

The choice of the shifted gauge wave test is a stringent test for convergence, as even
a gauge wave without shift can have a constraint preserving instability in harmonic coor-
dinates (i.e the gauge wave metric has exponentially growing perturbations which satisfy
the harmonic conditions and the Einstein equations). The addition of a shift introduces a
new type of exponentially growing instability in the standard harmonic reduction of the
Einstein equations. Thus the choice of a shifted gauge wave is a stringent non-linear test
of our system [126]. The success of this test shows that numerical noise excites insta-
bilities that can be cured by a combination of discrete conservation laws, well-posed and
constraint preserving boundaries, and constraint adjustments.

The standard gauge wave test is based upon the flat metric

ds2 = (1 −H)(−dt2 + dx2) + dy2 + dz2 , (3.72)

where

H = H(x− t) = A sin

(
2π(x− t)

d

)
, , (3.73)
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is a sinusoidal wave of amplitudeA propagating along thex-axis. In order to test 2-
dimensional features, the coordinates are rotated according to

x =
1

sqrt2
(x′ − y′) , y =

1

sqrt2
(x′ + y′) , (3.74)

which produces a gauge wave propagating along the diagonal with dependence

sin

(
2π(x′ − y′ − t′

√
2)

d′

)
, d′ = d

√
2 . (3.75)

Adjusting d or d′ to the size of the evolution domain gives periodicity in thex andy
directions.

In figure (3.8) I show the error values for a 2D shifted gauge wave with amplitude
A = 0.01, d = 2, and boundary widthx, y ∈ [−7, 7]. The resolutions presented here
aredx, dy = 0.05, 0.1, 0.2 doubled relative to the next lowest resolution, thus we expect,
from the convergence rate at timet, with the errorE =‖ Φρ − Φexact ‖∞

r(t) = log2(
‖ Φh=2δx − Φexact ‖∞
‖ Φh=δx − Φexact ‖∞

) , (3.76)

to obtainr(t = late) ≈ 2 andr(t = mid) ≈ 3 for our system with fourth order conver-
gent interior stencils, and second order at he outer boundary. Indeed, we obtain forr(t =
10)(0.05.0.1) = 4.0380, r(t = 30)(0.05.0.1) = 3.3907, andr(t = 200)(0.1.0.2) = 2.0457.
The standard non-SAT Sommerfeld boundary simulations wereunstable for the shifted
gauge wave tests.

Black Hole Space-times

The ultimate goal of this boundary treatment is to improve the accuracy and stability of
binary black hole simulations. As a simple test I did simulations for constraint preserving
SAT penalty boundaries and non-constraint-preserving standard Sommerfeld conditions
for a head on collision of two Brill-Lindquist black holes from a small separation of3M
with boundaries relatively close in at144M . The simulations were done in a fully har-
monic gauge and the interiors of the apparent horizons for each black hole was excised. I
extracted waves by both methods described in Section [2.6.3] and derived the total energy
of the system from the Hamiltonian and momentum constraints.

In Fig. [3.9] I show the constraint growth of the two simulations. Here you can see
that the harmonic coordinate constraints are much better preserved with the constraint
preserving SBP penalty boundaries than with standard Sommerfeld. This behaviour holds
for all the harmonic constraints as well as for the physical constraints. The constraint
violations in the constraint preserving SAT run continue todiminish smoothly down to
numerical error up to1000M , where the run was stopped. In Fig. [3.10] we show the
l = 2,m = 0 modes or the Zerilli scalar for waves extracted at a radius of70M from
the center of mass of the system. The noise from the boundary reflection is very clear
to see at around200M for the standard boundary simulations. For these simulations the
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Figure 3.9: TheL2-norm of the harmonic constraints for a head-on collision oftwo
black holes each of mass0.5M starting from an initial separation of3M
and with boundaries at144M , comparing constraint-preserving boundary
conditions with the standard Sommerfeld conditions.
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Figure 3.10:The ℓ = 2,m = 0 component of the Zerilli scalar for the extracted
gravitational radiation for a head-on collision of two black holes each of
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at 144M , comparing constraint-preserving boundary conditions with the
standard Sommerfeld conditions.
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standard Sommerfeld boundary condition run crashes around300M due to an instability
at the excision boundary cause by incoming noise reflected from the outer boundary. This
is strong proof that constraint preserving penalty boundaries improve stability for binary
black hole simulations, and can extend simulation runtime and improve accuracy.

3.1.7 Discussion

I have examined the initial boundary value problem for the second-order formulation of
the Einstein equations in the generalized harmonic gauge. The system of evolution equa-
tions for this finite-difference harmonic code was derived in [40] where it was shown to
be accurate, stable, and convergent for long-term evolutions of black hole space-times,
such as head-on collisions of two black holes, isolated black holes, and binary black hole
inspiral and merger. In this section I described the derivation, implementation and test-
ing of a new boundary treatment for this system. I demonstrated that this new treatment
maintained the validity and convergence (to lower order) seen with the standard boundary
treatments. I additionally show that these conditions giveus greater accuracy (for all rea-
sonable resolutions), improved constraint preservation,improved boundary transparency,
and greater stability in robust stability tests.

I implemented Sommerfeld-type boundary conditions as in Eq.(3.52), which are ap-
plied via the simultaneous approximation term (SAT) methodto control the energy growth
of the system, and are designed to be maximally dissipative.I then establish well-
posedness for the semi-discrete symmetric hyperbolic evolution system via the energy
method [103] by bounding the energy growth of the system under the assumption that the
boundaries are in the linearized regime. I have implementedfinite-differencing stencils
that obey the summation by parts (SBP) rule [102] with the diagonal norm, with mini-
mum bandwidth second-derivative SBP stencils as derived in[108]. These stencils give
fourth-order accuracy in the interior, and second-order atthe boundary. While the stan-
dard stencils give fourth-order everywhere, I show that theimproved accuracy of the SBP
conditions more than makes up for the loss of two orders of convergence.

The stability and well-posedness of the boundary conditions has been demonstrated
for a number of test problems: shifted scalar waves, linearized waves, nonlinear waves,
and random and high frequency stability tests. Further improved accuracy results from
incorporating the constraint preservation into the conditions, following the prescription
of [83, 97]. The boundary conditions are still Sommerfeld type for most metric com-
ponents, but I substitute conditions gained from enforced preservation of the harmonic
constraints. This gives us four conditions directly from the harmonic constraints, three
from the coupling of these conditions to my outgoing Sommerfeld-type conditions, and
the three components for the directions tangent to each boundary face come only from
our Sommerfeld-type conditions. In Section [5.1.6] I show that, as expected, these new
outgoing Sommerfeld, constraint-preserving conditions retain the robust stability and con-
vergence properties of the purely Sommerfeld-SBP conditions. The tests also demonstrate
that these new conditions lead to smaller errors in satisfying the constraints, and are more
transparent to waves propagating through the boundaries. They should thus lead to more
accurate evolutions than the purely Sommerfeld SAT penaltyboundary conditions.
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In a related study, Rinne et al. [111] have considered a number of boundary treat-
ments for the case of a first-order in space harmonic formulation, including the Kreiss-
Winicour [83] treatment adopted here for a second-order system. They find that an addi-
tional physically motivated condition,∂tΨ0 = 0, which aims to eliminate incoming radi-
ation, can have important effects in reducing physical reflections. Similar modifications
may also prove beneficial to the second-order system presented here, though apparent re-
flections from the outer boundary are rather small even in thecase of non-linear waves
studied in Section [3.1.6]. These physically motivated conditions will be discussedfor
boundary conditions for the BSSN formulation in the next section.

With binary black hole evolutions now extending over multiple orbits, and thus many
crossing times on conventional computational grids, boundary effects can potentially have
a non-trivial influence on the late-time dynamics and extracted gravitational wave signals
from such simulations. The tests provided here, including nonlinear Brill wave and binary
black hole head-on collision evolutions, suggest that these methods will also be effective
for isolated strong sources, and thus will also be appropriate for black hole inspiral simula-
tions, though these involve a number of other technical considerations (such as excision).
The methods can be extended to other formulations of the Einstein equations, provided
certain hyperbolicity assumptions are satisfied, and I willdescribe in the next section how
to pursue improvements of other commonly used systems such as the conformal-traceless
one employed in [87].

3.2 ADM -BSSN

Our firmest convictions are apt to be the most suspect, they mark our limi-
tations and our bounds. Life is a pretty thing unless it is moved by the in-
domitable urge to extend its boundaries.

Jose Ortega y Gasset

The Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formulation of Einstein field
equations is the most common formulation used in numerical relativity simulations today.
This is both because of historical reasons, and because of convenience in setting stable and
intuitive evolving gauge conditions, which allow for long term stable binary black hole
simulations. However, proving well-posedness in BSSN is a much more daunting prob-
lem than for the harmonic formulation of the Einstein equations, because BSSN is only
a strongly hyperbolic system for certain specific gauge conditions. However, the stability
of the system has been proven in [127] for a Bona-Masso type gauge condition and a fixed
shift. Thus, when we have artificial boundaries, in [127] they require the normal compo-
nent of the shift to be zero at the boundary, and conditions are placed on the nine incoming
eigenfields to obtain well-posedness. Deriving stable and well-posed boundary conditions
for the BSSN formulation has been a challenge faced by many inthe field for at least the
past decade of numerical relativity. Today, most numericalrelativity groups still use the
naive boundary conditions called “radiative” boundaries,described in Section [2.6.5] im-
posed to all the geometric variables, thus over-specifyingthe problem on the boundaries.
Those conditions are very easy to implement numerically, however, they do not preserve
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the physical constraints and can introduce an unreasonableamount of artificial radiation
into the system. In this section I construct boundary conditions which preserve the con-
straints and discuss the well posedness of the initial-boundary value problem (IBVP) for
the BSSN system.

Beyer’s work in [127] shows that the BSSN formulation for a Bona-Masso type gauge
condition and a fixed shift is reducible to a first order symmetric hyperbolic system
(FOSH). In that work and boundary conditions leading to a well posed system are for-
mulated. However, the boundary conditions presented in that paper are not constraint-
preserving. Thus, they may yield reflections or constraint-violating modes. The work by
Gundlach and Garcia in [34], formulates constraint-preserving boundary conditions for
the BSSN system but the well-posedness of the resulting IBVPhas not been established.
For the BSSN system I want to meet the same conditions for accuracy and validity as with
boundaries for the harmonic formulation described in the previous section [3.1]. That is,
it must not change the dynamical behavior of the fields reaching the boundary surface, it
must not introduce any fields coming from said boundary, the fields on the boundary must
be themselves be stable and bounded, and it must preserve thecondition on the full system
that it must also preserve the constraints for all times. In other words, the conditions must
provide one with both well-posedness and constraint preservation for the full system with
boundaries.

From [127] I have the requirement that nine sufficient conditions must be imposed,
and it gives us:

• the time dependence of theΨ0 Weyl component has to be zero, or at least bounded
(for binary simulations I simply requireΨ0 to be bounded);

• the normal to the boundary component of the shift vector, as well as the derivative
of the lapse in that direction have to be zero;

• finally, I get the other two conditions relating the lapse andthe shift in the directions
tangential to the boundary.

I present here a discussion on the well posedness of the complete system, as well as the
possible numerical implementation of such conditions at the boundary.

I present a new set of boundary conditions for the BSSN systemwith “1+log” slicing
described in Section [2.3.2] and the “Gamma driver” shift described Section [2.4.4] which
is currently commonly used in numerical simulations of binary black holes today. The
main properties of the boundary conditions described in this section are:

• they preserve the constraints throughout the evolution,

• they control the Weyl scalarΨ0 at the boundary (a condition that should yield small
spurious reflections of gravitational radiation),

• they yield a well-posed IBVP for the linearized problem (a reasonable assumption
if boundaries are far away), and are expected to yield a well posed problem in the
nonlinear case as well.
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As in [127] I have nine conditions. The boundary conditions obtained are the nine:

• for the gauge fields, I obtain the boundary condition that thenormal component of
the shift has to be zero, as in [127]

• the condition that the derivative of the lapse along the normal direction has to be
zero at the boundary (flat)

• another two conditions for the tangential components of theshift

• and from the fields and constraints I obtain the natural condition that the momentum
constraint has be satisfied boundary, leading to von Neumanntype conditions for
the extrinsic curvature,

• and, as in [127], I obtain that the Weyl scalarΨ0 at the boundary has to be bounded,
leading to relations between the second spatial derivatives of the metric coefficients.

In total, these are other five constraints, giving us the nineconditions needed at the bound-
ary.

This construction is based on the methods in [128,129] wherethe boundary conditions
are specified in three steps. In the first step, the constraintpropagation system is analyzed.
This system describes the propagation of the constraint variables, and I show that it can
be cast into a FOSH system. Homogeneous maximally dissipative boundary conditions
are specified for this system that guarantee the propagationof the constraints. The second
step consists of analyzing the propagation of theWeyl curvature.The BSSN evolution
system implies a convenient FOSH for the electric and magnetic parts of the Weyl tensor,
and the momentum constraint variable. I show that compatible boundary conditions for
this system can be specified by freezing the momentum constraint variable to zero and
freezing the Weyl scalarΨ0. Finally, the third step consists in controlling thegauge
degrees of freedom.The gauge functions, the lapseα and the shift vectorβi are free
to be chosen as best fits the problem to be evolved. This freedom, however, is limited
by several pragmatic requirements. I study the system for common evolution equations
where I reduce the evolution system for lapse and shift to a set of condition-dependent
evolution equations and specify boundary conditions for them. I present a brief discussion
of a numerical implementation of the boundary conditions that I am proposing and finish
with some conclusions of the complete system of boundary conditions obtained in this
work. What follows in this section is previously unpublished work and was work done
with the assistance and guidance of Dario Nuñez and Olivier Sarbach.

3.2.1 Boundary Conditions for the BSSN System

The evolution equations in this section are the BSSN evolution equations with Bona-
Masso slicing and hyperbolic Gamma driver shift as in Section [2.4.4] with the excep-
tion of the advection terms in the evolution equation for theshift. Using the notation
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from [127] the system derived and shown in Section [2.3.2] reads

∂̂0α = −α2f(α, φ.xµ)(K −K0(x
µ)) , (3.77)

∂̂0β
i = α2G(α, φ.xµ)Bi , (3.78)

∂̂0B
i = e−4φH(α, φ, xµ)∂̂0Γ

i − ηi(Bi, α, xµ) , (3.79)

∂̂0γ̃ij = −2αÃij + 2γ̃k(i∂ j)β
k − 2

3
γ̃ij∂kβ

k , (3.80)

∂̂0φ =
1

6

(
−αK + ∂kβ

k
)
, (3.81)

∂̂0Ãij = e−4φ
[
−D̃iD̃jα+ αR̃ij + α− 4∂(iφ · D̃ j)α

]TF
(3.82)

+ α
(
KÃij − 2ÃikÃ

k
j

)
+ 2Ãk(i∂ j)β

k − 2

3
Aij∂kβ

k − αe−4φŜij ,

∂̂0K = −e−4φ
[
D̃iD̃iα− 2∂iφ · D̃iα

]
+ α

(
ÃijÃ

ij +
1

3
K2

)
− αS , (3.83)

∂̂0Γ̃
i = γ̃jk∂j∂kβ

i +
1

3
γ̃ij∂j∂kβ

k + ∂kγ̃
kj · ∂jβi −

2

3
∂kγ̃

ki · ∂jβj (3.84)

− 2Ãij∂jα+ 2α

[
(m− 1)∂kÃ

ki − 2m

3
D̃iK +m

(
Γ̃ijkÃ

jk + 6Ãij∂jφ
)]

− Si ,

where I have introduced the operator∂̂0 = ∂t − βj∂j , and whereG(α, φ, xµ) and
H(α, φ, xµ) are smooth, strictly positive functions, andη(Bi, φ, xµ) is a smooth func-
tion and come from the ‘Γ-driver’ condition [33]. Here, all quantities with a tilde refer to
the conformal three metric̃γij. That is,D̃i andΓ̃kij refer to the covariant derivative and
the Christoffel symbols, respectively, with respect toγ̃ij. The expression[. . .]TF denotes
the trace-free part with respect to the conformal three metric, and

R̃ij = −1

2
γ̃kl∂k∂lγ̃ij + γ̃k(i∂ j)Γ̃

k − Γ̃(ij)k∂j γ̃
jk (3.85)

+ γ̃ls
(
2Γ̃k(i Γ̃ j)ks + Γ̃klsΓ̃klj

)
,

R̃φij = −2D̃iD̃jφ− 2γ̃ijD̃
kD̃kφ+ 4D̃iφD̃jφ− 4γ̃ijD̃

kφD̃kφ , (3.86)

are the conformal equations for the Ricci tensor in terms of the conformal metric and
scalar. The parameterm, in the evolution equation for̃Γi, which was introduced in [130],
controls how the momentum constraint is added to the evolution equations for the variable
Γ̃i. The system in [33] corresponds to the choicem = 1. f,G andH are strictly positive
and smooth functions of their arguments. The source termsS, Ŝij andSi are defined in

terms of the Ricci tensor,R(4)
ij , and the constraint variables

H =
1

2

(
γijR

(3)
ij +K2 −KijKij

)
, (3.87)

Mi = D̃jÃij − 2Ãij γ̃
ij(D̃iφ) − 2

3
D̃iK + 6ÃijD̃

jφ , (3.88)

Ci = Γ̃i − ∂j γ̃
ij , (3.89)

(3.90)
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Table 3.1: Boundary conditions for the BSSN variables. Nine sufficientand necessary
conditions at the boundary for the geometric variables, wherex is the direc-
tion perpendicular to the boundary, andA stands for the other two directions.

Function BC
α ∂xα = 0
βx βx = 0

β̇A
(
∂t −

√
3κ0∂x

)
βA = 4κ0

f0−4κ0
∂Aα or ∂xβA = 0

K,i Mi = 0 → K,i = 3
2

(
D̃jÃij + 6ÃijD̃

jφ
)

˙̃Axx, Ãxx,A Ψ0 = 0 → E⊥⊥ = −n ∧ B⊥⊥

according to

S = γ̃ijR
(4)
ij − 2H , (3.91)

Ŝij =
[
R

(4)
ij + γ̃k(i∂ j)C

k
]TF

, (3.92)

Si = 2αmγ̃Mj − ∂̂0Ci . (3.93)

The vacuum equations consist of the evolution equations (3.77) with S = 0, Ŝij = 0,
Si = 0 and, of course, the requirement that the constraints satisfy H = 0,Mi = 0 and
Ci = 0.

Jumping ahead, the boundary conditions for the BSSN system,consistent with the
constraint equations, conditions are shown in Table [3.1]. Here it can be seen that they
are nine conditions at the boundary. Four conditions must beimposed to the gauge func-
tions; the conditions on their behavior in the normal direction is expected, as the gauge
functions should not push the boundary; the other two conditions relating their behavior
in the directions tangential to the boundary, were initially surprising and add additional
challenges at corners and edges of boundary planes for Cartesian coordinates. Other three
conditions come from the requirement that the momentum constraints have to be satisfied
at the boundary, and the following sections will explain theimplementation for such a
condition. These conditions describe a relation between the derivatives of the trace of
the extrinsic curvature, and the divergence of its trace-free part. This condition has to
be satisfied over the entirety of the initial hypersurface. Iam only demanding that such
relation must be preserved during the evolution. The last two conditions relate to the ac-
tual two degrees of freedom that a gravitational problem hasin the gauge. For this case,
I am considering a problem that is localized and isolated, that I am already in a region
where the expected peeling behavior of the Weyl components can be consider valid, and
Ψ0 can be interpreted as describing the incoming gravitational radiation which is taken to
be bounded and negligible for the situations considered. Thus, I obtain conditions on the
electric and magnetic part the Weyl tensor at the boundary. Again, these conditions are
only valid in the linearized regime, and thus only valid in a regime far from the highly
non-linear and dynamic parts of the simulation domain. Furthermore, the requirements
on the gauge mean that for black hole initial data, these conditions could introduce more
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noise and reflection than naive conditions in the regime where the difference between zero
shift and flat lapse is far greater than numerical error.

3.2.2 Propagation of the Constraints

It can be shown that the evolution equations (3.77) and the Bianchi identities imply that
the constraint variablesH,Mi, andCi satisfy the following propagation system [127]

∂̂0H = − 1

α
Dj
(
α2Mj

)
− αe−4φÃij γ̃ki∂jCk +

2α

3
KH , (3.94)

∂̂0Mj =
α3

3
Dj
(
α−2H

)
+ αKMj +Di

(
α
[
γ̃k( ∂ j)Ck

]TF)
, (3.95)

∂̂0Ck = 2αmγ̃klMl . (3.96)

By introducing the new constraint variableZki = ∂iCk, Zij = Zki γ̃kj, one can reduce
Eqs. (3.94) to the first order linear system

∂̂0H = − 1

α
Dj
(
α2Mj

)
− αe−4φÃijZij +

2α

3
KH , (3.97)

∂̂0Mj =
α3

3
Dj
(
α−2H

)
+ αKMj +Di

(
αZ(ij)

)TF
(3.98)

− ασ
[
∂kZ

k
j − ∂jZ

k
k

]
,

∂̂0Ck = 2αmγ̃klMl , (3.99)

∂̂0Zij = 2αm∂iMj + lower order terms. (3.100)

Here, I have included in the right-hand side of Eq. (3.97) the term∂kZkj − ∂jZ
k
k

(which is identically zero sinceZki = ∂iCk) with an arbitrary factorσ. As I will show,
thisσ helps us to obtain a FOSH system. The all equations in the system Eq. (3.97) have
the form

∂̂0C = Â(u)iDiC + B̂(u)C , (3.101)

whereC are the constraint variables,u = (α, φ, γ̃ij ,K, Ãij , Γ̃
i) are the main variables,

and Âi and B̂ are matrix-valued functions ofu for i = 1, 2, 3. DecomposingZij =
Ẑ(ij)+Z[ij]+

1
3 γ̃ijZ into its trace-free symmetric part,̂Z(ij), its anti-symmetric part,Z[ij],

and its trace,Z = γ̃ijZij, and representingC in terms of the variablesC = (Ck, S1 :=

2mH + Z,S2 := H + 2Z,Mj,Z(ij), Z[ij])T , the principal symbol̂A(n) = Â(u)ini
acting on the constraint variables is given by

Â(n)




Ck
S1

S2

Mj

Ẑ(ij)

Z[ij]




= α




0
0

(4mσ − 1)njMj
1
3njS2 + (1 − σ)niẐ(ij) + σniZ[ij]

2m
(
n(iM j)

)TF
2mn[iM j]







Ck
S1

S2

Mj

Ẑ(ij)

Z[ij]



, (3.102)
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whereni ≡ γ̃ijnj andnini = 1 is normalized. This system is symmetric hyperbolic
provided the following inequalities hold:

4mσ − 1 > 0, 2m(1 − σ) > 0, 2mσ > 0 , (3.103)

for the free parameters. This is the case if and only ifm > 1/4 and1/4m < σ < 1. For
this case, in order to show well-posedness as in Section [2.6.4], a symmetrizerĤ = ĤT

is given by

CT ĤC = γ̃ijCiCj + S2
1 +

1

3(4mσ − 1)
S2

2 + γ̃ijMiMj + (3.104)

1 − σ

2m
γ̃ikγ̃jlẐ(ij)Ẑ(kl) +

σ

2m
γ̃ikγ̃jlZ[ij]Z[kl] .

whereĤ must be positive definite and satisfiesĤÂ(n) = Â(n)T Ĥ for the principal
symbol. Defining the energy norm

E =

∫

Ω
CT ĤCd3x , (3.105)

for the constraint variables on the domainΩ, and taking a time derivative to show bound-
edness, using Eq.(3.102) and Gauss’ theorem, I find

d

dt
E = 2

∫

Ω
CT Ĥ

[
(Âi + β)∂iC + B̂C

]
d3x+

∫

Ω
CT (∂tĤC)d3x (3.106)

=

∫

Ω

[
∂i

(
CT ĤÂiC +CT ĤβiC

)

+ CT
(
ĤB̂ + B̂T Ĥ − ∂i(ĤÂi + Ĥβi) + ∂tĤ

)
C
]
d3x

≤
∫

∂Ω
CT ĤÂ(n)Cd2x+ κE ,

where I have assumed that the shift is tangential to the boundary at the boundary and
whereκ is a constant that depends only on bounds for the symmetric parts of the matrix-
valued functionŝB, Ĥ−1∂i(ĤÂi + Ĥβi), andĤ−1∂tĤ. Therefore, if boundary condi-
tions on the constraintsC can be imposed such thatCT ĤÂ(n)C|∂Ω ≤ 0, the estimate
(3.106) implies thatE(t) ≥ eκtE(0).

In particular, this guarantees that zero initial data forC yieldsC = 0 for all t ≥ 0.
Explicitly,

CT ĤÂ(n)C = 2niMj

[
1

3
δijS2 + (1 + σ)Ẑ(ij) + σZ[ij]

]
, (3.107)

gives us the first restriction for the physical constraints to provide constraint preservation
for the whole system with artificial boundaries for this constraint propagation system. One
possibility to meet this requirement is to require that the momentum constraint variable
vanishes at the boundary,Mj|∂Ω = 0. One way to enforce this is to code this requirement
into the evolution equation for the curvature scalarK at the boundary.
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More generally, I can look at the characteristic fields whichare defined as the pro-
jections ofC onto the eigenspaces ofA(n) as in (3.104). The characteristic speeds and
corresponding fields are

µ = 0 ,

(
Ck , S1 ,

4m

3
S2 − (4mσ − 1)ninjẐij , (3.108)

hki Zkjn
j , hk[ih

l
j]Zkl ,

(
hk(ih

l
j) −

1

2
hijh

kl

)
Zkl

)
,

µ = ±α
√

4m− 1

3
, V (±) = njMj ±

√
3

4m− 1

[
1

3
S2 + (1 − σ)ninjẐij

]
,

µ = ±α
√
m, V̄

(±)
j = hjMk ±

1√
m
nihkj

[
(1 − σ)Ẑ(ik) + σZ[ik]

]
,

wherehj = δkj njn
k denotes the orthogonal projector onto the space tangent orthogonal

to ni. In terms of these fields, I have

CT ĤÂ(n)C =
1

2

√
4m− 1

3

[(
V (+)

)2
−
(
V (−)

)2
]

(3.109)

+

√
m

2
γ̃ij
[
V

(+)
i V

(−)
j − V

(−)
i V

(+)
j

]
,

Giving us the rest of the conditions for constraint preservation on the boundaries for this
constraint propagation system. Therefore, I may also impose the boundary conditions

[
V (+) + c1V

(−)
]
∂Ω

= 0 ,
[
V̄

(+)
j + c2V̄

(−)
j

]
∂Ω

= 0 , (3.110)

wherec1 andc2 are two functions on the boundary with magnitude smaller or equal than
one. The particular casec1 = c2 = 1 corresponds to imposing the momentum constraint
on the boundary.

3.2.3 Propagation of the Weyl Curvature

For the following section, I restrict my analysis to the casem = 1. Furthermore, I consider
only small amplitude, high frequency perturbations of smooth solutions. In this limit only
the principal part of the equations matters and the coefficient appearing in front of the
derivative operators can be frozen to the value of the smoothsolution at an arbitrary point
p. By rescaling and rotating the coordinates as necessary, one can achieve a space-time
metric that has the Minkowski form at pointp. This means that the coefficients in front of
the derivative operators in the evolution equations can be frozen to the values

α = 1 , φ = 0 , γ̃ij = δij , (3.111)

for a conformally flat system far away from the highly nonlinear and highly dynamic
region of the simulation domain. In this way, the evolution equations simplify to linear
equations with constant coefficients as I did in the previoussection [3.1]. Furthermore,
the domainΩ = {(x, y, z) ∈ ℜ3 : x > 0} can be considered to be a half-plane with
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boundary atx = 0. Intuitively, the high-frequency limit is the relevant limit for analyzing
that the system is well posed and stable in a numerical (discrete) regime.

For the following, I use the standard operators from vector calculusgrad, curl, div

defined by

(gradφ)i = ∂iφ , (curlX)i = εikl∂
kX l , divX = ∂kXk , (3.112)

for scalar and vector fieldsφ andX, respectively. They satisfy the identities

curl gradφ = 0 , div curlX = 0 , div gradφ = ∆φ ,

curl curlX = −∆X + graddivX , (3.113)

where∆ = ∂k∂k denotes the standard Laplacian. I consider the following generalization
from tensor calculus:

(gradX)ij := ∂(iX j) −
1

3
δij∂

kXk , (curlT )ij := εkl(i∂
kT lj) , (3.114)

(divT )j := ∂iTij ,

whereT is a symmetric, traceless tensor field. By definition,gradX and curlT are
symmetric, traceless tensor fields. The following identities generalize the previous ones
from vector calculus:

curl gradX =
1

2
gradcurlX , (3.115)

div curlT =
1

2
curl divT , (3.116)

div gradX =
1

2
∆X +

1

6
graddivX , (3.117)

curl curlT = −∆T +
3

2
graddivT , (3.118)

Notice that the identities (3.115, 3.117) imply thatcurl gradgradφ = 0 anddiv gradgradφ =
2grad∆Φ/3. With this notation, the evolution equations (3.77) in the high-frequency
limit are

α̇ = −f0K , (3.119)

β̇i = G0B
i , (3.120)

Ḃ = H0

(
∆β +

1

3
graddivβ − 4

3
gradK

)
, (3.121)

γ̇ = −2A+ 2gradβ , (3.122)

φ̇ =
1

6
(K + divβ) , (3.123)

Ȧ =
1

2
∆γ + gradΓ − 2gradgradφ− gradgradα , (3.124)

K̇ = −∆α , (3.125)

Γ̇ = ∆β +
1

3
graddivβ − 4

3
gradK , (3.126)
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wheref0, G0 andH0 are the values off , G andH frozen at the pointp, and where for
notational simplicity I omit the tildes over̃γ, Ã, and Γ̃ and continue to do so in what
follows. The linearized constraints are

H ≡ 1

2
divΓ − 4∆φ = 0 , (3.127)

M ≡ divA− 2

3
gradK = 0 , (3.128)

C ≡ Γ − divγ = 0 . (3.129)

To establish a stable system in the high-frequency domain, Ifocus my attention to the
linearized electric and magnetic parts of the Weyl curvature tensor. In terms of the BSSN
variables, these symmetric traceless tensors can be definedas

E = Ȧ+ gradgradM , (3.130)

B = curlA . (3.131)

Using the evolution equations (3.119) and the above identities (3.115-3.118) I find that
these quantities obey the FOSH system

Ė = −curlB +
3

2
gradM , (3.132)

Ḃ = +curlE , (3.133)

Ṁ = divE . (3.134)

which is subject to the constraint2divB = 2div curlA = curl divA = curlM . The
corresponding symbol with respect to the one-formn is

Ė = −n ∧ B +
3

2
n⊗M , (3.135)

Ḃ = +n ∧ E , (3.136)

Ṁ = n · E . (3.137)

where I use the notation(n ∧ B)ij := εkl(in
kBlj), (n ⊗ M)ij := n(iM j)

1
3δijn

kMk,

(n · E)j = niEij. Decomposing, I obtain

M = M‖n+ M⊥ ,

E =
3

2
E‖‖n⊗ n+ 2n ⊗ E‖⊥ + E⊥⊥ ,

into pieces parallel and orthogonal ton, this implies

Ė‖‖ = M‖ , Ḃ‖‖ = 0 , Ṁ‖ = E‖‖ ,

Ė‖⊥ = −1

2
n ∧ B‖⊥ +

3

4
M⊥ , Ḃ‖⊥ =

1

2
n ∧ E‖⊥ ,

Ė⊥⊥ = −n ∧ B⊥⊥ , Ḃ⊥⊥ = n ∧ E⊥⊥ ,
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from which I obtain the characteristic fields

V (±1) = E‖‖ ±M‖ ,

V
(±1)
⊥ = 4E‖⊥ ∓ 2n ∧ B‖⊥ ± 3M ,

Z
(0)
⊥ = B‖⊥ − 1

2
n ∧M⊥ ,

V
(±1)
⊥⊥ = E⊥⊥ ∓ n ∧ B⊥⊥ ,

with corresponding speeds indicated by the superscripts(±1) and(0). Maximally dissi-
pative boundary conditions allow a coupling between the in-and outgoing fields of the
form V (+1) = cV (1) + G, wherec is a constant which is smaller than or equal to one in
magnitude,n is the unit outward normal to the boundary andG is boundary data. The
fieldsV (±1)

⊥⊥ are related to the (linearized) Weyl scalarsΨ0 andΨ4 constructed from a null
tetradl, k,m, m̄ with l = ∂t + n, k = ∂tn through

V
(+1)
⊥⊥ = (Ψ0m̄⊗ m̄+ Ψ0m⊗m) , V

(−1)
⊥⊥ = (Ψ4m̄⊗ m̄+ Ψ4m⊗m) .

In particular, the allowed class of boundary conditions makes it possible to freeze the
Weyl scalarΨ0 at the boundary to its initial value by imposing

V
(+1)
⊥⊥ = V

(+1)
⊥⊥ |t=0 . (3.138)

This condition has been shown to yield a reflection coefficient that decays as fast as(kR)4

for monochromatic gravitational radiation with wave number k and a spherical outer
boundary of radiusR [84,131]. It has also been tested numerically in [111] and shown to
out-perform other currently used boundary conditions. By imposingV (+1) = V (−1), it
is also possible to set the constraintM‖‖ to zero at the boundary. On the other hand, the

form ofV (±1)
⊥ does not allow us to set the orthogonal component,M⊥, of the momentum

constraint variable to zero.

For this reason, I perform a slight modification to the propagation system (3.132) by
using the constraint2divBcurlM = 0. For this, letn := ∂x. n is a unit vector field,
which, at the boundary, coincides with the unit outward normal to∂Ω. Then, replace Eq.
(3.132) with

Ė = −curlB +
3

2
gradM + n⊗

[
n ∧

(
divB − 1

2
curlM

)]
. (3.139)

With this modification I haveĖ‖⊥ = M⊥. The time-derivative of the other fields remain
unchanged. The characteristic fields with respect ton are the same as before except for
V

(±1)
⊥ which has to be replaced by

V
(±)
⊥ = E‖⊥ ±M⊥ . (3.140)

Therefore, it is now possible to impose the momentum constraint at the boundary:M = 0

by requiringV (+1) = V (−1) andV (+1)
⊥ = V

(−1)
⊥ . In order to show that this leads to a
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well-posed system I prove that these boundary conditions, together with theΨ0-freezing
boundary condition (3.138) are maximally dissipative conditions and that the modified
evolution system (3.132, 3.139) is still symmetric hyperbolic. For this, it is convenient to
replaceB by the new variableK defined by

K := B − n⊗ (n ∧M) . (3.141)

In order to write down the principal symbol of the resulting evolution equations, I choose
standard Cartesian coordinatesx , y , z onΩ such thatn = ∂x. The principal symbol with
respect to an arbitrary one-formm then reads

Ėxx = −εABmAKBx +mxMx −mAMA , (3.142)

K̇xx = −εABmAEBx , (3.143)

Ṁx = mxMx +mAEAx , (3.144)

ĖxB = −εCDmCK̂DB − 1

2
εCBmCmCKxx +mxMB +

1

2
mBMx , (3.145)

K̇xB = +εCDmC ÊDB +
1

2
εCBmCExx , (3.146)

ṀB = mxExB +mAÊAB − 1

2
mBExx , (3.147)

ĖAB = −mxεC(A K̂C
B) + εC(Am

CKB)x −
1

2
δABε

CDmCKDx (3.148)

+ m(AMB) −
1

2
δABm

CMC ,

K̇AB = +mxεC(A ÊCB) − εC(Am
CEB)x +

1

2
δABε

CDmCEDx , (3.149)

(3.150)

where the indicesA,B,C,D refer to the coordinatesy andz, and I have defined̂EAB :=
EAB 1

2δABδ
CDECD and an analogous relation for̂KAB . It is straightforward to verify that

this symbol is symmetric with respect to the symmetrizerH defined by

UTHU = E2
xx + K2

xx + M2
x + 2δAB (ExAExB + KxAKxB + MAMB)(3.151)

+ 2δACδBD
(
ÊAB ÊCD + K̂ABK̂CD

)
,

whereU = (E , K, M)T . In a coordinate-independent notation, I may also write

UTHU = |E‖‖|2 + |K‖‖|2 + |M‖|2 + 2|E‖⊥|2 + 2|K‖⊥|2 + 2|M⊥|2 + |E⊥⊥|2 + |K⊥⊥|2 .
(3.152)

As I did for the harmonic system, in order to demonstrate well-posedness mathematically,
I want to obtain a bound on the time dependence of the energy ofthe system. To do this I
define the energy norm, as before

N :=

∫

Ω
UTHUd3x (3.153)
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and take the time derivative to obtain the estimate

d

dt
N = −

∫

∂Ω

[
2ExxMx + 4ExAMA + 4ÊABεACK̂C

B

]
d2x (3.154)

=

∫

x=0

[
1

2

(
|V (+1)|2 − |V (−1)|2

)
+
(
|V (+1)

⊥ |2 − |V (−1)
⊥ |2

)

+
(
|V (+1)

⊥⊥ |2 − |V (−1)
⊥⊥ |2

)]
dydz

= −
∫

x=0
|V (−1)

⊥⊥ |2t=0dydz +

∫

x=0
|V (+1)

⊥⊥ |2t=0dydz

≤ 2

∫

x=0
|Ψ0|2t=0dydz

if the boundary conditionsMx = 0 and (3.138) are imposed. Therefore, I obtain an
L2-estimate for the curvature variablesE , B, M. In view of Eqs. (3.130, 3.131, 3.129)
this yieldsL2-estimates forȦ, curlA anddivA provided I have appropriate estimates
for the lapse,α, and the trace of the extrinsic curvature,K. As for the harmonic system,
by integrating the evolution equations in time one obtainsL2-estimates forφ, gradφ, γ,
curlγ, divγ provided suitable estimates are available forα,K andβ. This will be shown
in the next section.

These estimates are sufficient to bound theL2 norm of the full gradient ofA. Onℜ3,
it can be proven that anL2 bound oncurlA anddivA imply anL2-bound ongradA.
However, this is not true in general on the half-planeΩ: For example, letχ be an arbitrary
harmonic function on which decays exponentially to zero as|x| → inf and letA :=
gradgradχ. Then,curlA = 0 anddivA = 2grad∆χ/3 = 0, but A 6= 0 unless
boundary conditions atx = 0 forceχ to be linear. Thus conditions need to be specified
on all boundary planes for well-posedness to hold.

3.2.4 Propagation of Lapse and Shift

In this section I analyze the “gauge sector”, that is the propagation of lapse and shift. I
continue to work with the assumptions of the last section:m = 1, and small amplitude,
high frequency perturbations to smooth solutions so that the evolution equations for the
lapse and shift are given by Eqs. (3.119, 3.120). I will also use the corresponding evo-
lution equation for the trace of the extrinsic curvature, Eq. (3.125). It is useful to define
the quantities:a := f−1

0 gradα, D := G−1divβ, R := G−1curlβ. Thus from these
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definitions and Eqs.(3.119-3.125) I obtain the following first-order system

α̇ = −f0K , (3.155)

β̇ = G0B , (3.156)

Ḃ = κ0

(
−3curlR+ 4gradD − 4

G0
gradK

)
, (3.157)

Ṙ = curlB , (3.158)

Ḋ = divB , (3.159)

K̇ = f0diva , (3.160)

ȧ = gradK , (3.161)

whereκ0 := G0H0/3 and where I have used the identity (3.113). This system is almost
in symmetric hyperbolic form– only the last term on the right-hand side of the evolution
equation forB is an exception. However, if I assume that4κ0 6= f0 and replaceD andB
by the new fields

F := D +
4H0K

3(f0 − 4κ0)
, C := B +

4H0f0a

3(f0 − 4κ0)
, (3.162)

and use the constraintf0curla = curl gradα = 0, I can rewrite the system in the form

K̇ = f0diva , (3.163)

ȧ = gradK , (3.164)

Ċ = κ0 (−3curlR+ 4gradF ) , (3.165)

Ṙ = curlC , (3.166)

Ḟ = divC , (3.167)

which is now manifestly symmetrizable hyperbolic. If I introduce the energy norm as in
the previous sections

E :=
1

2

∫

Ω

(
K2 + f0|a|2 + C2 + 3κ0|R|2 + 4κ0F

2
)
d3x , (3.168)

the evolution equations then imply that

d

dt
E =

∫

Ω
div (f0Ka+ 4κ0FC + 3κ0C ∧R) d3x (3.169)

= −
∫

x=0
(f0Kax + 4κ0FCx + 3κ0(C ∧R)x) dydz .

In terms of the characteristic fields this becomes

Y (±) := K +
√
f0a‖ , W

(±)
‖ := C‖ ± 2

√
κ0F , W

(±)
⊥ := C⊥ ∓

√
3κ0n ∧R ,

(3.170)
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where againn = ∂x, so the time derivative of the energy norm becomes

d

dt
E =

1

4

∫

x=0

(√
f0

[
|Y (+)|2 − |Y (−)|2

]
(3.171)

+ 2
√
κ0

[
|W (+)

‖ |2 − |W (−)
‖ |2

]
+

√
3κ0

[
|W (+)

⊥ |2 − |W (−)
⊥ |2

])
dydz .

An interesting possibility to bound this solution then consists of the following boundary
conditions

∂xα = 0 , βx = 0 , (∂t −
√

3κ0∂x)βA =
4κ0

f0 − 4κ0
∂Aα , A = y, z .

(3.172)
Thus implying thatY (+) = Y (−), W (+)

‖ = W
(−)
‖ andW (+)

⊥ = 0, which makes the
boundary term negative definite. Furthermore, these conditions allow for the control the
normal component of the shift, which is what is wanted. However, an alternative choice
for gauge conditions at the boundary could consist of

∂xα = 0 , βx = 0 , (∂t −
√

3κ0∂x)βA = 0 , A = y, z . (3.173)

which impliesY (+) = Y (−),W (+)
‖ = W

(−)
‖ andW (+)

⊥ = W
(−)
⊥ and makes the boundary

term zero.

In this way, I obtain anL2-estimate for the fieldsK = −f−1
0 α̇, gradα, B = G−1

0 β̇,
curlβ anddivβ. With the boundary conditionx = 0 this implies anL2-estimate for
the symmetric and traceless gradient,grad, of the shiftβ. This follows from the integral
identity

∫

Ω
|gradβ|2d3x =

∫

Ω

(
1

2
|curlβ|2 +

2

3
|divβ|2

)
d3x (3.174)

−
∫

x=0

(
βA∂Aβx − βx∂Aβ

A
)
dydz ,

which follows using twice integration by parts. Therefore,I obtain an estimate for the
H1-norms of lapse and shift. The second derivatives ofα andβ can be estimated by first
taking time and tangential derivatives of the evolution equations and boundary conditions,
and repeating the above analysis to obtain anL2 bound forα̈ andβ̈ and anH1 bound for
∂Aα and∂Aβ and then using the evolution equationsα̈ = f0∆α and β̈ = κ0(3∆β +
graddivβ − 4gradK) in order to estimate the second normal derivatives∂x∂xα and
∂x∂xβ. In this way, one arrives at anH2-bound forα andβi. In the fully-discrete system,
this of course, only holds if you have finite differencing stencils whose operators obey
SBP as described in the previous section, and, of course, only in the linearized regime,
where an assumption of flat lapse and negligible shift is valid within numerical error.

3.2.5 Numerical Implementation

I have derived boundary conditions involving the geometricfields and their derivatives
evaluated at the boundary. Those conditions coming from thefact that the momentum
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constraint has to be preserved at the boundary,Mj |∂Ω = 0, should not be difficult to
implement numerically, as long as these conditions are already satisfied for the initial
hypersurface, so one must be careful to see that it is also initially satisfied at the bound-
aries. Once this is done, the condition must hold through outthe evolution. But this is
usually checked at every few steps, as a measure that the constraints are being preserved,
so it is only needed to see that this is so at the boundaries as well. Simply put, from the
momentum constraint, I have obtained the right-hand-side conditions

K̇ = K,r −
1

r
K =

3

2

(
D̃jÃrj + 6Ãrj + 6ÃrjD̃

jφ
)

(3.175)

Ȧxx = −(curlA)xx (3.176)

With respect to the gauge conditions, the ones referring to the direction normal to the hy-
persurface,βx = ∂xα = 0, should not present any implementation problem. If one starts
with initial conditions considering that the lapse is approximately one and shift is vanish-
ing at the boundary and the normal component of the lapse should remain zero. However,
for boundaries in the simulation domain in the region where the lapse is different from
one by much more than numerical error, and the lapse or the shift is rapidly evolving,
these boundaries will perform much worse than standard radiative conditions.

With respect to the other two conditions, if I consider that∂xβA = 0, and that initially
the shift was zero, one has to implement that it remains so at the boundary. If I chose the
other two conditions:(∂t−

√
3κ0∂x)βA = 4κ0

f0−4κ0
∂Aα, they are more robust and, by con-

struction, they are consistent with the evolution equationfor the shift, but their numerical
implementation is more challenging. However, where∂xβA = 0 is not consistent with the
shift conditions for the system, this choice is not stable. Thus a more freely evolving con-
dition such as(∂t −

√
3κ0∂x)βA = 4κ0

f0−4κ0
∂Aα is the better choice for most simulations

using a Gamma-driver shift.

It is of course the final test of this proposal, to show that it is not only a theoretical
discussion, which is in itself valid and important to know that one works with a clean
problem, but also it is has to be seen directly during the actual numerical evolutions.

3.2.6 Discussion

Besides the importance of having a well-posed system, thereis a practical consequence of
defining correct conditions at the boundary. This is the factthat this choice allows one to
place the boundary conditions, in principle, in any place where the linearized assumptions
hold, thus reducing the need for making large numerical grids with the consequence of
savings in computational resource requirements needed to simulate a given problem.

The question is not how to avoid the problem of artificial outer boundary well-
posedness by creative ways, for instance adding numerical dissipation so that almost noth-
ing arrives at the boundary, but the purpose should rather beto directly face the problem
and having, at least in the theoretical level, a set of equations that are well defined. It
took some time for the numerical community to get convinced of the practical advantages
of having a well-posed system of equations, and for a time a great deal of attention was
focused on the developing powerful codes. During this time several mathematical aspects
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were neglected. Learning from that experience, it seems reasonable to insist on the need
for evolving with a clean and properly posed system of equations.

In the present work I have derived for the BSSN formulation the necessary boundary
conditions which preserve the constraints and lead to a stable initial-boundary value prob-
lem in the linear limit for spacetimes which are the conformally flat. These conditions
are given in terms of the variable fields and its derivatives at the boundary, and I have
shown that the final system is indeed symmetric hyperbolic and preserves the constraints.
Notice that the needed conditions at the boundary do not involve all the geometric quan-
tities nor their derivatives, only the normal component of the shift,βx, the derivative of
the lapse in the normal direction,∂xα, a relation between the advection derivative of the
tangential components of the shift and the the derivative ofthe lapse in these directions;
three relations among the derivative of the trace of extrinsic curvature, the gradient of the
symmetric traceless tensor̃Aij , and the conformal function,φ; and two relations between
the temporal and spatial derivative of the normal componentof the symmetric traceless
tensorÃxx. Thus, unlike standard methods, one does not over-specify the conditions on
the boundary surface.

For sufficiently distant boundaries in the linearized regime, the boundary conditions
described in the present work will help to make the numericalevolutions of relativistic
spacetimes more robust. In terms of practical gain, there isstill much work to be done in
order to quantify the importance of using adequate boundaryconditions. However, any
improvement in accuracy and efficiency is a valuable contribution for the current state of
the field of numerical relativity.



Chapter 4

Physics from Numerical Simulations

Binary black hole systems are expected to be one of the strongest sources of gravita-
tional waves and are therefore the subject of intense investigation. With earth-based
gravitational-wave detectors now working at design-sensitivity and a space-borne detec-
tor in planning stages, the need for reliable templates to beused by detectors in matched
filtering techniques has made the need for numerical analysis more urgent. Using numer-
ical methods developed in the past four years [19, 20, 132] there has been an explosion
of results (see,e.g.,refs. [9,59,133–143]). These developments are important for at least
three different reasons. First, they allow for improved templates to be used in the analysis
of the data coming from the detectors. Second, they allow probes of General Relativity
in regimes that have previously been inaccessible. Lastly,– and the topic of this chapter –
they can provide important astrophysical information.

Recent progress in numerical relativity has solved the problem of stably evolving
black hole initial data for useful timescales. This has opened the door to studies of phys-
ical phenomena resulting from strong-field gravitational interactions and to extended and
systematic studies of these systems. A result of particularinterest to astrophysics is an
accurate calculation of the recoil velocity and spin of the final merged black hole gener-
ated during an asymmetric collision of a black-hole binary.It is well known that a binary
with unequal masses or spins of the individual bodies will radiate gravitational energy
asymmetrically. This results in an uneven flux, which gives anet linear momentum to
the final black hole, often called a “kick” [144,145]. While estimations of kick velocities
have been available for some time [146–148], the largest part of the system’s acceleration
is generated in the final orbits of the binary system, and as such requires fully relativistic
calculations to be determined accurately. General relativity also predicts that black hole
spins and their angular momenta interact due to frame dragging and cause ‘spin-up’ and
‘spin-down’ effects, not predicted by classical gravity. The knowledge of both the ‘kick’
velocity and of the final spin could have a direct impact on studies of the evolution of
supermassive black holes and on statistical studies on the dynamics of compact objects
in dense stellar systems, as well as significant effect on thewaveform and impact on pa-
rameter estimation for gravitational wave detectors, which will be discussed in the next
chapter.

It can be convenient to think of the inspiral and merger of twoblack holes (BHs) as

99
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a mechanism which takes, as input, two BHs of initial massesM1, M2 and spin vectors
S1, S2 and produces, as output, a third BH of massMfin and spinSfin. Since most or all
of the eccentricity is removed quickly by the gravitationalradiation reaction during the
inspiral [149], in conditions of particular astrophysicalinterest, the inspiral takes place
through quasi-circular orbits. Furthermore, for nonspinning equal mass BHs, the final
spin does not depend on the value of the eccentricity as long as it is not too large [150].
The determination ofMfin andSfin from the knowledge ofM1,2 andS1,2, is of great
importance in several fields. In astrophysics, it provides information on the properties
of isolated stellar mass BHs produced at the end of the evolution of a binary system
of massive stars. In cosmology, it can be used to model the distribution of masses and
spins of the supermassive BHs produced through the merger ofgalaxies. In addition,
in gravitational wave astronomy, thea priori knowledge of the final spin can help the
detection of the ringdown. What makes this a difficult problem is clear: the space of
initial parameters for the final spin has seven dimensions (i.e., the mass ratioq ≡M2/M1

and the six components of the two spin vectors). A number of analytical approaches have
been developed over the years to determine the final spin, either exploiting the dynamics
of point-particles [4, 151] or using more sophisticated approaches such as the effective
one body (EOB) approximation [152]. Ultimately, however, computingafin ≡ Sfin/M

2
fin

accurately requires the solution of the full Einstein equations and thus the use of numerical
relativity simulations. Several groups have investigatedthis problem over the last couple
of years [1,8,9,87,153].

In this section I will discuss work done in collaboration with Luciano Rezzolla, Enrico
Barausse, Ernst Nils Dorband, Denis Pollney, Christian Reisswig, Sascha Husa, Peter
Diener, and Erik Schnetter to study the parameter space of binary black hole collisions in
vacuum. I will discuss the simulations done to cover this seven-dimensional parameter
space, done with the code described in Section [2.7]. I will then discuss how we derived
phenomenological formulae for the prediction of final recoil velocity and spin of a merged
black hole from physical assumptions and fits to our numerically generated results. This
section is based upon papers written with the aforementioned people and myself. The spin
results may be found in the works [8, 154]. The kick results may be obtained from [87,
155].

4.1 Simulations

Over the past few years, a number of simulations have been carried out to determine the
recoil velocities for a variety of binary black-hole systems. Non-spinning but unequal-
mass binaries were the first systems to be studied and severalworks have now provided
an accurate mapping of the unequal mass space of parameters [136, 139, 156]. More re-
cently, the recoils from binaries with spinning black holeshave also been considered by
investigating equal-mass binaries in which the spins of theblack holes are either aligned
with the orbital angular momentum [155, 157], or anti-aligned (i.e. S1 is parallel toL
andS1 = −S2). In the first case, a systematic investigation has shown that the largest
recoil possible from such systems is on the order of450 km/s [87]. In the second case,
instead, specific configurations with spins orthogonal to the orbital one have been shown
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to lead to recoils as high as2500 km/s [158, 159], suggesting a maximum kick of about
4000 km/s for maximally-spinning black holes [160]. Recoil velocities of this magnitude
could lead to the ejection of massive black holes from the hosting galaxies, with impor-
tant consequences on their cosmological evolution. Beyondthat, studies have been, and
are still being performed to cover the space of misaligned (not aligned or anti-aligned)
and unequal spins, and unequal masses with spins. Challenges still remain to extend to
extremal spins (Si ≈ 0.9) and low mass ratios (q ≈ 0.1) for numerical simulations. How-
ever, by fitting to the results for the range and dimensions ofthe parameter space we are
able to cover, and by matching to the extreme mass ratio inspiral case (EMRI) for which
we may use a point particle solution, we can fairly accurately predict final spin and recoil
velocity for the entire space of parameters (a1i, a2i, andq).

The numerical simulations have been carried out using the CCATIE code described
in Section [2.7], a three-dimensional finite-differences code using the Cactus Computa-
tional Toolkit [91] and Carpet mesh refinement infrastructure [93]. The main features of
the code have been recently reviewed in [87], where the code has been employed using
the “moving-punctures” technique [20, 59] described in Section [2.4.4]. For aligned and
anti-aligned spins, initial data consists of five sequenceswith constant orbital angular mo-
mentum, which is different from sequence to sequence. In ther andra-sequences, the
initial spin of one of the black holesS2 is held fixed along thez-axis and the spin of the
other black hole is varied so that the spin ratioa1/a2 takes the values between−1 and
+1, with ai ≡ Si/M

2
i . In thet-sequence, instead, the spin with a negativez-component

is held fixed, while in thes andu-sequencesa1/a2 = 1 and−1, respectively. In all
those cases, the masses areMi = M/2 = 1/2. I performed further simulations for un-
equal masses with aligned spins, and two simulations with misaligned spins and equal
masses, and two simulations with spins selected to merge near Schwarzschild (Sfin = 0)
as predicted by our formula.

For r, ra, s, t, andu sequences defined in Table (4.2) the orbital initial data param-
eters we use the effective-potential method, which allows one to choose the initial data
parameters such that the resulting physical parameters (e.g.,masses and spins) describe
a binary black-hole system on a quasi-circular orbit. For the misaligned and unequal
mass runs higher accuracy was required and I generated the initial data by integrating
post-Newtonian equations to obtain the inspiral parameters. The free parameters are: the
coordinate locationsCi, the mass parametersmi, the linear momentapi, and the spinsSi.
For the aligned and anti-aligned runs quasi-circular orbits were then selected by setting
p1 = −p2 to be orthogonal toC2−C1, so thatL ≡ C1×p1 +C2×p2 is the orbital an-
gular momentum. The initial parameters for the aligned and misaligned spin simulations
are collected in the left part of Table4.2, while the right part reports the results of simula-
tions. For all simulations herein, we have employed 8 levelsof refinement and a minimum
resolution0.024M , which has been reduced to0.018M for binariesr5, r6. Our results
for theu-sequence differ slightly from those reported by [157], probably because of our
accounting of the integration constant in|vkick| [87].

We evolve a conformal-traceless “3 + 1” formulation of the Einstein equations [27–
29, 95] described in Section [2.3.2], in which the spacetime is decomposed into three-
dimensional spacelike slices, described by a metricγij, its embedding in the full space-
time, specified by the extrinsic curvatureKij, and the gauge functionsα (lapse) andβi
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Figure 4.1: Position in the(a1, a2) space of the five sequencesr, ra, s, t, andu for
which the inspiral and merger has been computed.

(shift) that specify a coordinate frame. The particular system which we evolve transforms
the standard ADM variables as follows. The 3-metricγij is conformally transformed via

φ =
1

12
ln det γij, γ̃ij = e−4φγij , (4.1)

and the conformal factorφ evolved as an independent variable, whereasγ̃ij is subject to
the constraintdet γ̃ij = 1. The extrinsic curvature is subjected to the same conformal
transformation, and its tracetrKij evolved as an independent variable. That is, in place
of Kij we evolve:

K ≡ trKij = gijKij, Ãij = e−4φ(Kij −
1

3
γijK), (4.2)

with tr Ãij = 0. Finally, new evolution variables

Γ̃i = γ̃jkΓ̃ijk (4.3)

are introduced, defined in terms of the Christoffel symbols of the conformal 3-metric.

The Einstein equations specify a well known set of evolutionequations for the listed
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variables and are given by

(∂t − Lβ) γ̃ij = −2αÃij , (4.4)

(∂t − Lβ) φ = −1

6
αK, (4.5)

(∂t −Lβ) Ãij = e−4φ[−DiDjα+ αRij ]
TF + α(KÃij − 2ÃikÃ

k
j), (4.6)

(∂t −Lβ) K = −DiDiα+ α(ÃijÃ
ij +

1

3
K2), (4.7)

∂tΓ̃
i = γ̃jk∂j∂kβ

i +
1

3
γ̃ij∂j∂kβ

k + βj∂jΓ̃
i − Γ̃j∂jβ

i +
2

3
Γ̃i∂jβ

j

− 2Ãij∂jα+ 2α(Γ̃ijkÃ
jk + 6Ãij∂jφ− 2

3
γ̃ij∂jK), (4.8)

whereRij is the three-dimensional Ricci tensor,Di the covariant derivative associated
with the three metricγij and “TF” indicates the trace-free part of tensor objects. The
Einstein equations also lead to a set of physical constraintequations that are satisfied
within each spacelike slice,

H ≡ R(3) +K2 −KijK
ij = 0, (4.9)

Mi ≡ Dj(K
ij − γijK) = 0, (4.10)

which are usually referred to as Hamiltonian and momentum constraints. HereR(3) =
Rijγ

ij is the Ricci scalar on a three-dimensional time slice. Our specific choice of evolu-
tion variables introduces five additional constraints,

det γ̃ij = 1, (4.11)

tr Ãij = 0, (4.12)

Γ̃i = γ̃jkΓ̃ijk. (4.13)

Our code actively enforces the algebraic constraints (4.11) and (4.12). The remaining
constraints,H, Mi, and (4.13), are not actively enforced, and can be used as monitors of
the accuracy of our numerical solution. See [33] for a more comprehensive discussion of
the these points.

We specify the gauge in terms of the standard ADM lapse function,α, and shift vector,
βa [161]. We evolve the lapse according to the “1 + log” slicing condition:

∂tα− βi∂iα = −2α(K −K0), (4.14)

whereK0 is the initial value of the trace of the extrinsic curvature,and equals zero for the
maximally sliced initial data we consider here. The shift isevolved using the hyperbolic
Γ̃-driver condition [33],

∂tβ
i − βj∂jβ

i =
3

4
αBi , (4.15)

∂tB
i − βj∂jB

i = ∂tΓ̃
i − βj∂jΓ̃

i − ηBi , (4.16)
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whereη is a parameter which acts as a damping coefficient. The advection terms on the
right-hand-sides of these equations were not present in theoriginal definitions of [33],
where co-moving coordinates were used, but have been added following the experience
of [60,132], and are required for correct advection of the puncture in “moving-puncture”
evolutions.

Spatial differentiation of the evolution variables is performed via straightforward
finite-differencing using fourth-order accurate centeredstencils for all but the advection
terms for each variable, which are upwinded in the directionof the shift. Vertex-centered
adaptive mesh-refinement (AMR) is employed using nested grids [92,93] with a2 : 1 re-
finement for successive grid levels, and the highest resolution concentrated in the neigh-
borhood of the individual horizons as described in Section [2.7]. Individual apparent
horizons are located every few time steps during the evolution [70, 162] by the method
described in Section [2.6.1].

The time steps on each grid are set by the Courant condition and thus the spatial
grid resolution for that level, with the time evolution being carried out using fourth-order
accurate Runge-Kutta integration steps as in Section [2.5.2]. Boundary data for finer grids
are calculated with spatial prolongation operators employing 5th-order polynomials, and
prolongation in time employing 2nd-order polynomials. Thelatter allows a significant
memory saving, requiring only three time levels to be stored, with little loss of accuracy
due to the long dynamical timescale relative to the typical grid time step.

4.1.1 Initial data

The initial data are constructed applying the “puncture” method [49], which uses Bowen-
York extrinsic curvature and solves the Hamiltonian constraint equation numerically as
in [52]as discussed in Section [2.4].

We have considered a sequence of binaries for which the initial spin of one of the black
holes is held fixed atS2/M

2 = 0.146ez , and the spin of the other black hole isS1/M
2 =

(a1/a2)S2/M
2, where the spin ratioa1/a2 takes the values−1, −3/4, . . . , 3/4, 1, and

M is the sum of the black hole masses,M = M1 + M2. Thus the black hole spins are
anti-aligned whena1/a2 is negative and aligned when it is positive. In all cases the initial
data parameters are chosen such that the black hole masses are

Mi =

√
Ai
16π

+
4πS2

i

Ai
=

1

2
, (4.17)

[163,164] whereAi is the area of thei-th apparent horizon as derived in Section [2.6.2].

For the orbital initial data parameters I use the effective potential method introduced
in [165] and extended to spinning configurations in [166]. The effective potential method
is a way of choosing the initial data parameters such that therequired physical parameters
(e.g. masses and spins) are obtained to describe a binary black-hole system on a quasi-
circular orbit.

The free parameters to be chosen for the puncture initial data are: the puncture co-
ordinate locationsCi, the puncture mass parametersmi, the linear momentapi, and the
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Table 4.1: The puncture initial data parameters defining the binaries:location±x/M , linear momenta±p/M , mass parametersmi/M , spins
Si/M

2, dimensionless spinsai, ADM massM
ADM

measured at infinity, and ADM angular momentumJ
ADM

computed from Eq. (4.48).
Note that we setM1 = M2 = 1/2 [cf., Eq. (4.17)].

Model ±x/M ±p/M m1/M m2/M S1/M
2 S2/M

2 a1 a2 M
ADM

/M J
ADM

/M2

r0 3.0205 0.1366 0.4011 0.4009 -0.1460 0.1460 -0.5840 0.5840 0.9856 0.8252
r1 3.1264 0.1319 0.4380 0.4016 -0.1095 0.1460 -0.4380 0.5840 0.9855 0.8612
r2 3.2198 0.1281 0.4615 0.4022 -0.0730 0.1460 -0.2920 0.5840 0.9856 0.8979
r3 3.3190 0.1243 0.4749 0.4028 -0.0365 0.1460 -0.1460 0.5840 0.9857 0.9346
r4 3.4100 0.1210 0.4796 0.4034 0.0000 0.1460 0.0000 0.5840 0.9859 0.9712
r5 3.5063 0.1176 0.4761 0.4040 0.0365 0.1460 0.1460 0.5840 0.9862 1.007
r6 3.5988 0.1146 0.4638 0.4044 0.0730 0.1460 0.2920 0.5840 0.9864 1.044
r7 3.6841 0.1120 0.4412 0.4048 0.1095 0.1460 0.4380 0.5840 0.9867 1.081
r8 3.7705 0.1094 0.4052 0.4052 0.1460 0.1460 0.5840 0.5840 0.9872 1.117
r0l 4.1924 0.1073 0.4066 0.4065 -0.1460 0.1460 -0.5840 0.5840 0.9889 0.8997
r0s 2.8186 0.1441 0.3997 0.3994 -0.1460 0.1460 -0.5840 0.5840 0.9849 0.8123
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individual spinsSi. Since I am interested in quasi-circular orbits we work in the zero
momentum frame and choosep1 = −p2 to be orthogonal toC2 − C1. The physical
parameters we want to control are: the black hole mass ratioM1/M2, the orbital angular
momentumL = C1 × p1 + C2 × p2 (see for example [165–167]) and the dimensionless
spin parametersai = Si/M

2
i . In order to choose the input parameters that correspond to

the desired physical parameters I have to use a non-linear root finding procedure, since
the physical parameters depend non-linearly on the input parameters and it is not possible
to invert the problem analytically.

As detailed in [166], when the black-hole spins are taken as parameters, it is possible
to reduce the number of independent input variables, so thatat a given separation̄C ≡
|C2−C1|/m1, the independent input parameters are:q̄ ≡ m1/m2 and the dimensionless
magnitude of the linear momentump/m1. Using a Newton-Raphson method, I solve
for q̄ andp/m1 so thatM1/M2 = 1 and the system has a given dimensionless orbital
angular momentum,L/(µM) whereµ = m1m2/M

2 is the reduced mass. For such a
configuration the initial data solver [52] returns a very accurate value forM

ADM
, which

together with the accurate irreducible mass calculated by the apparent horizon finder [70,
162] makes it possible to calculate an accurate value of the dimensionless binding energy

Eb/µ = (M
ADM

−M1 −M2)/µ. (4.18)

The quasi-circular initial data parameters are then obtained by finding the minimum in
Eb/µ for varying values ofC̄ while keeping the required orbital angular momentum
L/(µM) constant.

I chose a fixed orbital angular momentumL/(µM) = 3.3 for the quasi-circular orbit
initial data parameters. This value was chosen to ensure that modelr0 would have enough
evolution time for an accurate kick measurement, while at the same time modelr8 would
not require too much evolution time due to orbital ‘hang-up’effects for aligned spins. In
order to check the influence of the evolution time before plunge on the kick measurements
of the r0 model, we also calculated initial data for ar0 configuration at larger initial
separationr0l and at smaller initial separationr0s. The parameters for all the initial data
sets are shown in Table4.1.

Note that the physical massMi of a single puncture black hole increases when the
spin parameter is increased if the mass parametermi is kept constant. For that reason
obtainingM1 = M2 in general requires thatm1 6= m2. Even in the case where the spins
have the same magnitude but different directions, the two black holes will have different
spin-orbit interactions leading to slightly different physical masses ifm1 = m2. For this
reason, the initial data forr0 in Table4.1has slightly different puncture mass parameters
m1 6= m2. In contrast, in modelr8 the black holes have identical spin parameters and thus
also the same spin-orbit interaction, resulting in identical mass parametersm1 = m2. For
this reason I wrote a Newton-Raphson solver to iterate with the quasi-circular puncture
initial data solver to solve for the puncture masses to converge to the desired ADM masses
with spin accounted for.
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4.1.2 Convergence tests

As discussed in section [2.5.1] the finite difference error of the derivative stencils usedin
the numerical algorithm isO(h4), while the error in the time-interpolation stencils used
for mesh refinement boundary points isO(∆t3). Thus the expected theoretical conver-
gence rate is three. However, it is only time-related operations which are at third order,
and since the time step which we use is smaller than the grid spacing and much smaller
than the dynamical timescales, we can expect that the error coefficient of the leading or-
der term is quite small. Third order convergence is expectedduring time-periods when
the system goes through rapid dynamical changes, such as theplunge or merger, and
fourth-order is expected at early times in the simulation.

The proper convergence of the code was established using thebinary systemr0, for
which we have carried out evolutions using 8 levels of mesh refinement with fine grid-
spacings ofh/M = 0.024, 0.018, and0.012 (i.e., resolutions “medium”, “high”, and
“very-high”, respectively, where “low” refers toh = 0.030 which was deemed to be of
insufficient accuracy). Other refinement levels have resolutions that are half of the next
finest grid. The refinement levels on the initial slice are setup to be identical for the three
resolutions and their locations and sizes evolve accordingto the same algorithm in each
case.

We focus on the convergence of a number of different aspects of the code. The first
of these is the degree of satisfaction of the Einstein equations, which can be partially
determined by examining the Hamiltonian and momentum constraints (4.9)–(4.10). A
more stringent requirement is to evaluate how well the Einstein tensor satisfies the vacuum
condition,Gαβ = 0. For this we define the positive definite quantity

G ≡
{ √

G2
00 +G2

01 + · · · +G2
33 outside appar. horizons

0 inside appar. horizons .
(4.19)

In computing norms over the entire grid, we find it useful to mask out the interiors of the
horizons, where the error at the puncture locations – which is not expected to converge –
can dominate over more relevant errors in the physically observable domain. In order to
computeGαβ we compute the4-derivatives of the ADM metric, lapse and shift, then con-
struct the4-derivatives of the4-metric from which we can compute the Riemann tensor
and then finally obtainGαβ . Time-derivatives are taken using three time-levels, centered
around the past time-level. Spatial derivatives are taken using fourth-order accurate cen-
tered stencils. Thus the finite-difference error in computingGαβ is O(∆t2) in time and
O(h4) in the space dimensions. Effectively we see a minimum of third order accuracy for
this quantity, indicating that the coefficient of theO(∆t2) error term is small compared
to the higher-order terms.

Since the metric gradients and hence the truncation errors are the largest near the
black-holes, through theL∞ norm of (4.19) we effectively monitor that the Einstein tensor
converges near the horizons for the duration of the evolution. This is a strong test in
comparison with the common use of theL2 norm, as the latter tends to dilute errors in
small regions or 2D surfaces such as grid boundaries, as theyare normalized over the
entire grid volume. By contrast, theL∞ norm measures the worst error on the grid, which
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by propagation of error will also suffer if there are any non-convergent regions on the
grid.

This convergence ofG is summarized in Fig.4.2, which reports the time evolution
of theL∞ norm of (4.19) at the medium and very-high resolutions. Also indicated with
dashed and dotted lines are the expression for theL∞ norm of (4.19) at the very-high res-
olution when rescaled for third (dotted line) and fourth-order convergence (dashed line).

There is a period at the beginning of the evolutions where theinitial data construction
prevents fourth-order convergence. This is due to the fact that the initial data is com-
puted by an interpolation of the results of a spectral solveronto the finite difference grid
which is used for evolution. An error is introduced because we keep fixed the number
of spectral coefficients and because the Cartesian grid points do not coincide with the
spectral collocation points of the Chebyshev polynomials,resulting in a certain amount
of high-frequency noise that spoils the convergence for some time at the beginning of
the simulation. Numerical dissipation and the constraint damping built into the evolution
system implies that the evolution quickly adjusts itself toactually solving the Einstein
equations to a good accuracy. The effects of these initial transient modes can last for
different amounts of time for the different resolutions,e.g., ∼ 10M for the medium res-
olution and∼ 30M for the very-high resolution.

Soon after this transient has disappeared, the code shows the expected fourth-order
convergence, with the largest values of the violation foundin the vicinity of the apparent
horizons, where the gradients in the metric are the steepest. The violations grow rapidly
with time as the binary inspirals and the largest values of the violation of the Einstein
tensor are seen at the time of the merger,t ≈ 109M , with values as large asO(300). Such
violations are essentially confined to asinglegrid point on the trailing edge of the apparent
horizon and are produced by the very steep gradients in the shift. Clearly, violations of
this magnitude would not be revealed when looking at theL2 norms and are a source of
concern. However, as we will show later, such violations do not propagate away from the
horizon to affect the fourth-order convergence of the waveforms in the interior and sliding
to thrid order near the boundaries.

At the time of the merger the excision of a common apparent horizon from the calcula-
tion of theL∞ norm is responsible for the decrease by about four orders of the violation.
After this, theL∞ do not grow further in time for the very-high resolution simulation,
while a modest increase is seen in the simulation run at medium resolution. During this
time the code shows a convergence which is between third-order (right after the merger)
and fourth-order (during the ringdown).

In addition to convergence in the Einstein tensor, we also validate the correctness of
the physically relevant information contained in the waveforms. We do this by computing
convergence rate of the waveformsQ+

22, Q+
33, andQ×

21 using the ratio of the integrated
differences between the medium and high resolutions, and the high and very-high resolu-
tions

ρ(Q) ≡

√∫ u2

u1
|Q0.024 −Q0.018|2du

√∫ u2

u1
|Q0.018 −Q0.012|2du

, (4.20)
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Figure 4.2: TheL∞ norm of the Einstein tensor Eq. (4.19) as a function of time. During
the periods of strong dynamics (i.e., when the time derivatives of the evolu-
tion variables are large) the convergence order is dominated by the accuracy
of the time-interpolation algorithm used at mesh refinementboundaries,
thus yielding third-order accuracy. At the times when thesetime-derivatives
are small, the fourth-order finite-differencing algorithmbecomes the domi-
nant source of the error. Note that the very large violations(of O(300) at the
medium resolution) are confined to asinglegrid point on the trailing edge
of the apparent horizon and are produced by the very steep gradients in the
shift. As discussed later, this does not affect the fourth-order convergence
of the waveforms. At the time of the merger a common apparent horizon
forms and its excision from the calculation of theL∞ norm is responsible
for the drop in the violation.

whereu ≡ t − r
E

is the retarded time at a given detector,Q stands for eitherQ+
22,

Q+
33 orQ×

21 and refers to either its amplitude or the phase. As indicatedin Eq. (4.20), the
integrals are evaluated over the retarded interval[u1, u2] which does not include the initial
spurious burst of radiation (which we do not expect to converge) but contains otherwise
the complete waveform including the ringdown.

Assuming a truncation errorO(hp) and that the coefficient of this error does not de-
pend on resolution, the functionρ becomes to leading order

ρ =
(h0.024)

p − (h0.018)
p

(h0.018)p − (h0.012)p
, (4.21)

whereh0.024 = 0.024M and I underline the importance of having used a full doublingof
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the resolution between the smallest and largest resolutionto improve the accuracy of this
estimate over more narrowly spaced resolution steps. In practice, we measureρ and then
solve for the“effective” convergence orderp using Eq. (4.21). A discussion of the details
in this procedure are presented in AppendixA.4 alongside with the computed convergence
rates for the amplitudes and phases ofQ which are found to between two (ℓ = 3) and four
(ℓ = 2) (cf., TableA.1).

The above definition of convergence rate results in non-integer values for the expo-
nentρ, even though our methods are explicitly polynomial. This isbecause the derivation
of (4.21) assumes a coefficient of one in the leading order error term that extrapolates be-
tween resolutions. If the coefficient is in practice different for a given set of resolutions,
then a non-integer value is larger if the coefficient is smaller. As such, values obtained
in this way should not be considered literal polynomial extrapolation orders. By “con-
vergence order 3.8” we rather mean that our results are consistent with third-order finite
differencing where the leading third-order error coefficient is quite small so that at the
given resolutions the convergence appears to be closer to a fourth-order approximation.
Very high convergence exponents are a likely indication that the lowest resolution is not
in the convergent regime for the measured quantity. Non-integer convergence orders ob-
tained in this way are resolution dependent, and should themselves converge to the lowest
order finite difference approximation used in the code in thelimit of infinite resolution.

An important property of the waveforms which has emerged when performing these
convergence tests is that the dominant source of error is a de-phasing which causes the
lower resolution evolutions to “lag” behind the higher resolution. This delay is usually
rather small and between0.1M and0.5M , but it is visible when comparing the total
amplitude ofQ as a function of time. The most important consequence of thiserror is that
it can spoil the convergence tests if not properly taken intoaccount: the residuals errors
seem, in fact, to indicate over-convergence. This is shown in the upper panel of Fig.4.3,
which reports the differences betweenQ+

22 when computed at different resolutions scaled
for fourth-order convergence. The overlap is rather poor and even indicating that the
truncation error is smaller than expected. This is an artifact of the near cancellation of
the lowest-order terms in the truncation error and induced by the small time-differences
at different resolutions.

We remove this effect by shifting the time coordinate of the medium and high res-
olution runs by the time interval needed to produce an alignment of the maxima of the
emitted radiation. Details on how to do this are discussed inAppendixA.4, and we report
in the lower panel of Fig.4.3 the same data shown in the upper panel, but after the time-
shifting. Clearly, the overlap is now extremely good suggesting that the time-shifting is
essential for obtaining the expected fourth-order convergence in the waveforms. In accord
with the convergence in the waveforms we also see fourth order convergence in the final
kick value, and spins.

As a final note we remark that besides validating a proper convergence of the code, it
is also important to assess the accuracy of any measurable quantity at the relevant reso-
lutions considered here. As a representative and physically meaningful quantity we have
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Table 4.2: Binary sequences for which numerical simulations have beencarried out, with different columns referring to the puncture initial location

±x/M , the linear momenta±p/M , the mass parametersmi/M , the dimensionless spinsai, the normalized ADM mass̃M
ADM

≡
M

ADM
/M measured at infinity, and the normalized ADM angular momentum J̃

ADM
≡ J

ADM
/M2. Finally, the last six columns contain

the numerical and fitted values for|vkick| (in km/s), afin and the corresponding errors.

±x/M ±p/M m1/M m2/M a1 a2 M̃
ADM

J̃
ADM

|v
kick

| |vfit
kick

| err. (%) a
fin

afit
fin

err. (%)
r0 3.0205 0.1366 0.4011 0.4009 -0.584 0.584 0.9856 0.825261.75 258.09 1.40 0.6891 0.6883 0.12
r1 3.1264 0.1319 0.4380 0.4016 -0.438 0.584 0.9855 0.861221.38 219.04 1.06 0.7109 0.7105 0.06
r2 3.2198 0.1281 0.4615 0.4022 -0.292 0.584 0.9856 0.898186.18 181.93 2.28 0.7314 0.7322 0.11
r3 3.3190 0.1243 0.4749 0.4028 -0.146 0.584 0.9857 0.935144.02 146.75 1.90 0.7516 0.7536 0.27
r4 3.4100 0.1210 0.4796 0.4034 0.000 0.584 0.9859 0.971106.11 113.52 6.98 0.7740 0.7747 0.08
r5 3.5063 0.1176 0.4761 0.4040 0.146 0.584 0.9862 1.00781.42 82.23 1.00 0.7948 0.7953 0.06
r6 3.5988 0.1146 0.4638 0.4044 0.292 0.584 0.9864 1.04445.90 52.88 15.21 0.8150 0.8156 0.07
r7 3.6841 0.1120 0.4412 0.4048 0.438 0.584 0.9867 1.08120.59 25.47 23.70 0.8364 0.8355 0.11
r8 3.7705 0.1094 0.4052 0.4052 0.584 0.584 0.9872 1.117 0.00 0.00 0.00 0.8550 0.855 0.00
ra0 2.9654 0.1391 0.4585 0.4584 -0.300 0.300 0.9845 0.8250131.34 132.58 0.95 0.6894 0.6883 0.16
ra1 3.0046 0.1373 0.4645 0.4587 -0.250 0.300 0.9846 0.8376118.10 120.28 1.85 0.6971 0.6959 0.17
ra2 3.0438 0.1355 0.4692 0.4591 -0.200 0.300 0.9847 0.8499106.33 108.21 1.77 0.7047 0.7035 0.17
ra3 3.0816 0.1339 0.4730 0.4594 -0.150 0.300 0.9848 0.862894.98 96.36 1.46 0.7120 0.7111 0.13
ra4 3.1215 0.1321 0.4757 0.4597 -0.100 0.300 0.9849 0.874784.74 84.75 0.01 0.7192 0.7185 0.09
ra6 3.1988 0.1290 0.4782 0.4602 0.000 0.300 0.9850 0.900363.43 62.19 1.95 0.7331 0.7334 0.04
ra8 3.2705 0.1261 0.4768 0.4608 0.100 0.300 0.9852 0.924841.29 40.55 1.79 0.7471 0.7481 0.13
s0 2.9447 0.1401 0.4761 0.4761 0.000 0.000 0.9844 0.82510.00 0.00 0.00 0.6892 0.6883 0.13
s1 3.1106 0.1326 0.4756 0.4756 0.100 0.100 0.9848 0.87490.00 0.00 0.00 0.7192 0.7185 0.09
s2 3.2718 0.1261 0.4709 0.4709 0.200 0.200 0.9851 0.92510.00 0.00 0.00 0.7471 0.7481 0.13
s3 3.4098 0.1210 0.4617 0.4617 0.300 0.300 0.9855 0.97510.00 0.00 0.00 0.7772 0.7769 0.03
s4 3.5521 0.1161 0.4476 0.4476 0.400 0.400 0.9859 1.02500.00 0.00 0.00 0.8077 0.8051 0.33
s5 3.6721 0.1123 0.4276 0.4276 0.500 0.500 0.9865 1.07480.00 0.00 0.00 0.8340 0.8325 0.18
s6 3.7896 0.1088 0.4002 0.4002 0.600 0.600 0.9874 1.12460.00 0.00 0.00 0.8583 0.8592 0.11
t1 4.0812 0.1103 0.4062 0.4426 -0.584 0.438 0.9884 0.8638238.37 232.62 2.41 0.6640 0.6658 0.27
t2 3.9767 0.1131 0.4057 0.4652 -0.584 0.292 0.9881 0.8265200.25 205.21 2.48 0.6400 0.6429 0.45
t3 3.8632 0.1165 0.4053 0.4775 -0.584 0.146 0.9879 0.7906174.58 175.86 0.73 0.6180 0.6196 0.26
t4 3.7387 0.1204 0.4047 0.4810 -0.584 0.000 0.9878 0.7543142.62 144.57 1.37 0.5965 0.5959 0.09
t5 3.6102 0.1246 0.4041 0.4761 -0.584 -0.146 0.9876 0.7172106.36 111.34 4.68 0.5738 0.5719 0.33
t6 3.4765 0.1294 0.4033 0.4625 -0.584 -0.292 0.9874 0.680771.35 76.17 6.75 0.5493 0.5475 0.32
t7 3.3391 0.1348 0.4025 0.4387 -0.584 -0.438 0.9873 0.644735.36 39.05 10.45 0.5233 0.5227 0.11
t8 3.1712 0.1419 0.4015 0.4015 -0.584 -0.584 0.9875 0.60800.00 0.00 0.00 0.4955 0.4976 0.42
u1 2.9500 0.1398 0.4683 0.4685 -0.200 0.200 0.9845 0.824887.34 88.39 1.20 0.6893 0.6883 0.15
u2 2.9800 0.1384 0.4436 0.4438 -0.400 0.400 0.9846 0.8249175.39 176.78 0.79 0.6895 0.6883 0.17
u3 3.0500 0.1355 0.3951 0.3953 -0.600 0.600 0.9847 0.8266266.39 265.16 0.46 0.6884 0.6883 0.01
u4 3.1500 0.1310 0.2968 0.2970 -0.800 0.800 0.9850 0.8253356.87 353.55 0.93 0.6884 0.6883 0.01
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Figure 4.3: Convergence of the fiducial waveformQ+
22 for the binary systemr0 before

and after the time-shift defined in Eqs. (A.38)–(A.40). In the upper graph
we show the difference betweenQ+

22 when computed at different resolu-
tions, scaled for fourth-order convergence and using raw data (i.e., without
time-shifting). The overlap between the curves is rather poor indicating an
over-convergence (i.e., the truncation error appears to be smaller than ex-
pected). In the lower panel we show the same data but after time-shifting.
The very good overlap of the scaled curves on the indicates that the time-
shifting is essential for obtaining properly scaling differences between runs
of various resolutions.

considered the accuracy of the fiducial waveformQ+
22 for the binary systemr0. This is

shown in Fig.4.4, where in the upper graph we report the waveforms at the threediffer-
ent resolutions: very-high (continuous line), high (dashed line) and medium (dotted line).
Already with the lowest of these resolutions the accuracy issufficiently high so that the
curves are essentially indistinguishable from each other by eye. The lower panels show
magnifications of the relevant portions of the waveform, with the lower-left panel concen-
trating on the initial transient radiation produced by the truncation error. The latter clearly
is rather large at the medium resolution, but it converges away smoothly when the grid
spacing is decreased. The lower-right panel, on the other hand, refers to the quasi-normal
ringing and shows that it is well-captured at all resolutions.
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Figure 4.4: Accuracy of the fiducial waveformQ+
22 for the binary systemr0. In the

upper graph we show the waveforms at the three different resolutions: very-
high (continuous line), high (dashed line), medium (dottedline). The accu-
racy is very good already with the lowest resolution and the curves cannot
be distinguished. The lower panels show magnifications of some relevant
portions of the waveform, with the lower-left panel concentrating on the
initial transient radiation produced by the truncation error. The lower-right
panel, on the other hand, refers to the quasi-normal ringingand shows that
it is well-captured at all resolutions.

4.2 Kicks

Together with energy and angular momentum, gravitational radiation also carries away
linear momentum. In the case of a binary system of non-spinning black holes, a physical
intuition of this loss of linear momentum can be built rathereasily. As the two bodies
orbit around the common center of mass, each will emit radiation which is longitudinally-
beamed. Unless the two black holes have exactly the same mass, their motion will be
different, with the smaller black hole moving more rapidly and, hence, being more effi-
cient in beaming its emission. The net momentum gained over an orbit is negligible if
the orbit is almost circular (the momentum loss in any direction is essentially balanced
by an equal loss in the diametrically opposite direction), but it can become large when
integrated over many orbits, leading to a recoil that is a fraction (. 10−2) of the speed of
light during the last portion of the orbit prior to the merger.

A number of PN/perturbative analyses (see,e.g.,[148, 168]) have provided estimates
of this recoil velocity, while numerical-relativity simulations [136, 139] have recently
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measured it to rather high precision, predicting a maximal kick of 175 km/s for a bi-
nary system of nonspinning black holes with a mass ratioq ≡M1/M2 ≃ 0.36, whereM1

andM2 are the masses of the two black holes. Such a recoil has indeedquite important
astrophysical consequences, since it could, provided it islarge enough, kick the binary out
of its host environment. Clearly, a replaced or an even missing central black hole would
have dramatic consequences for the further development of the host. Determining accu-
rately what are the expected escape velocities for the most typical environments hosting
a binary black hole system is rather difficult, but the estimates made in refs. [169, 170],
for instance, predict that the escape velocities for dwarf galaxies and globular clusters are
. 100 km/s, but for giant galaxies these can be∼ 1000 km/s.

When adopting a purely geometrical viewpoint, it is obviousthat a kick velocity
should be expected in any binary system which is not perfectly symmetric. A difference
in the masses is a simple way of producing such an asymmetry but surely not the only
one. Indeed, even an equal-mass system can be made asymmetric if the two black holes
have unequal spins [171]. Also in this case, a simple physical intuition can be constructed.
Consider, for simplicity an equal-mass binary in which onlyone member is spinning par-
allel to the orbital angular momentum. As a result of the spin-induced frame dragging, the
speed of the nonspinning body will be increased and its radiation further beamed. Using
PN theory at the 2.5 order, Kidder [172] has treated this spin-orbit interaction concluding
that in the case of a circular, non-precessing orbit, the total kick for a binary system of
arbitrary mass and spin ratio can be expressed as [148]

|v|kick = c1
q2(1 − q)

(1 + q)5
+ c2

a2q
2(1 − qa1/a2)

(1 + q)5
, (4.22)

wherea1,2 ≡ S1,2/M
2
1,2 are the dimensionless spins of the two black holes and these are

aligned with the total orbital angular momentum,i.e., S1,2 = a1,2M
2
1,2ez for an orbital

motion in the(x, y) plane. Here,c1 andc2 are factors depending on the total mass of
the system and on the orbital separation at which the system stops radiating. This radius
is difficult to determine precisely as it lies in a region where the PN approximation is
not very accurate and is, in practice, not even a constant but, rather, depends on both the
mass and the spin ratio. Assuming for simplicityc1 ≃ c2, expression (4.41) reveals that a
substantial contribution to the recoil velocity comes fromthe spins alone. In addition, for
any givenq, it predicts a linear growth of the recoil velocity with increasing difference in
spins, yielding a kick which is comparable with the one coming from the asymmetry in
the mass. Stated differently, when it comes to recoil velocities, the spin contributions may
be the dominant ones.

Apart from finding the maximal possible value for the recoil velocity it has been tried
to develop a semi-analytic description fitting the data available so far [173, 174]. In this
section I want to draw the attention to the techniques of extracting the waves and thus the
recoil velocity. It is, for example, not clear how sensitivethe methods used are to gauge
effects such as the motion of the black hole on the grid. During the time it takes to extract
the information, the system will have moved significantly when its speed is∼ 1% of the
speed of light.
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4.2.1 Kick measurements viaΨ4

In radiating spacetimes where the radiation is emitted asymmetrically, there will be a net
linear momentum imparted to the system. In particular, in the case of a binary black hole
merger, the final black hole receives a “kick” which causes itto move off at a given veloc-
ity. This velocity can be determined by an analysis of the emitted radiation. In ADM-type
numerical simulations, this is typically done by evaluating some scalar quantity which can
be associated with the wave energy at some large radius within the computational domain.
The chosen radius needs to be large enough that it is in the “wave zone”, where non-linear
self-interaction of the gravitational field is negligible and the waves can be picked out as
perturbations of a background.

Two methods have become commonplace to determine the emitted wave energy. The
first uses the Newman-Penrose curvature scalarΨ4, which can be identified with the grav-
itational radiation if a suitable frame is chosen at the extraction radius. An alternative
method measures the metric of the numerically generated spacetime against a fixed back-
ground at the extraction radius, and determines the Zerilli-Moncrief perturbation modes.
Both methods yield data for the gravitational wave energy which can be integrated to de-
termine a net linear momentum. Both of these methods are described in detail in Section
[2.6.3].

The Newman-Penrose formalism provides a convenient representation for a number
of radiation related quantities as spin-weighted scalars.In particular, the curvature com-
ponent

Ψ4 ≡ −Cαβγδnαm̄βnγm̄δ, (4.23)

is defined as a particular component of the Weyl curvature,Cαβγδ , projected onto a given
null frame,{l,n,m, m̄}. In practice, we define an orthonormal basis in the three space
(r̂, θ̂, φ̂), centered on the Cartesian grid center and oriented with poles alongẑ. The
normal to the slice defines a time-like vectort̂, from which we construct the null frame

l =
1√
2
(t̂ − r̂), n =

1√
2
(t̂ + r̂), m =

1√
2
(θ̂ − iφ̂) . (4.24)

We then calculateΨ4 via a reformulation of (4.23) in terms of ADM variables on the
slice [175],

Ψ4 = Cijm̄
im̄j, (4.25)

where
Cij ≡ Rij −KKij +Ki

kKkj − iǫi
kl∇lKjk. (4.26)

The identification of the Newman-PenroseΨ4 with the gravitational radiation content
of the spacetime is a result of the peeling theorem, which states that in an appropriate
frame theΨ4 component of the curvature has the slowest falloff with radius,O(1/r). The
conditions of this theorem are not satisfied exactly at a small radius and in the chosen
frame. While there are proposals for how this situation can be improved [176], we find
that beyondr

E
≥ 30M in fact our measure ofΨ4 scales extremely well with the dif-

ferent extraction radiir
E
, suggesting that the peeling property is satisfied to a reasonable

approximation (see Fig.4.5).
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Figure 4.5: Amplitude ofr
E,sch

|Ψ4| for extraction spheres atr
E

= 30M , 40M , 50M
and60M , demonstrating thatΨ4 does indeed fall off as required by the
peeling property. There is a slight decrease in amplitude with larger radius,
suggesting that dissipative effects may become important at larger radii.
Results in this paper use waveforms from ther

E
= 50M extraction sphere,

unless indicated otherwise.

The gravitational wave polarization amplitudesh+ andh× are related toΨ4 by [77]

ḧ+ − iḧ× = Ψ4 , (4.27)

where the double over-dot stands for second-order time derivative. The flux of linear
momentum emitted in gravitational waves in thei-direction can be computed from the
Isaacson’s energy-momentum tensor and can be written in terms of the two polarization
amplitudes as [148]

Fi ≡ Ṗi =
r2

16π

∫
dΩ ni

(
ḣ2

+ + ḣ2
×

)
, (4.28)

whereni = xi/r is the unit radial vector that points from the source to the observer and
dΩ = sin θdφdθ is the line element of our extraction 2-sphereS2. Using Eq. (4.27), this
leads to an expression for the momentum flux in terms ofΨ4 as it is commonly used in
recent numerical relativity calculations [136,139,155,157,159,160,177]:

Fi = lim
rsch→∞

{
r2sch
16π

∫
dΩ ni

∣∣∣∣
∫ t

−∞
dtΨ4

∣∣∣∣
2
}
. (4.29)
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The Schwarzschild radius,rsch, is derived from the coordinate (isotropic) radius via the
standard formula

rsch = riso

(
1 − M

2riso

)2

. (4.30)

assuming a constant ADM massM = M
ADM

throughout the simulation. With this choice
of radial coordinate, expression (4.29) has been shown to provide recoil velocities which
are in better agreement with those obtained through gauge-invariant perturbations than
with the alternative coordinate radius, (cf. Sect.4.2.2) and reported in the literature (Ad-
ditional details on the numerical measurement ofΨ4 are presented in AppendixA.5.)

4.2.2 Kick measurements via gauge-invariant perturbations

An independent method to compute the linear momentum carried away by gravitational
radiation is based on the measurements of the non-sphericalgauge-invariant perturbations
of a Schwarzschild black hole (see Refs. [178–180] for applications to Cartesian coordi-
nates grids). In practice, a set of “observers” is placed on 2-spheres of fixed coordinate
radiusr

E
, where they extract the gauge-invariant, odd-parity (oraxial) current multipoles

Q×
ℓm and even-parity (orpolar) mass multipolesQ+

ℓm of the metric perturbation [76].
The numerical implementations of the gauge-invariant variables is done by following the
multi-polar analysis outlined by Abrahams and Price [181].TheQ+

ℓm andQ×
ℓm variables

are related toh+ andh× as [182]

h+ − ih× =
1√
2r

∞∑

ℓ=2

ℓ∑

m=−ℓ

(
Q+
ℓm

−i

∫ t

−∞
Q×
ℓm(t′)dt′

)
−2Y

ℓm . (4.31)

Here−2Y
ℓm are thes = −2 spin-weighted spherical harmonics and(ℓ,m) are the indices

of the angular decomposition. Validations of this approachin 3D vacuum spacetimes can
be found in Refs. [114,180,183], while its use with matter sources has first been reported
in [184].

We note that the notation introduced in Eq. (4.31) could be misleading as it seems to
suggest thath× is always of odd-parity andh+ is always of even-parity. In the absence
of axisymmetry,i.e., whenm 6= 0, bothh× andh+ are a superposition of odd and even
parity modes. It is only for axisymmetric systems, for whichonly m = 0 modes are
present, thatQ×

ℓm andQ+
ℓm arereal numbers, thath+ is only even-parity andh× is only

odd-parity. Despite this possible confusion, we here prefer to maintain the notation of
Eq. (4.31) which is the most common in the literature [182].

The flux of linear momentum emitted in gravitational waves interms ofQ+
ℓm andQ×

ℓm

can be computed by inserting Eq. (4.31) in Eq. (4.28), then decomposingni in spherical
harmonics and performing the angular integral. This procedure goes along the lines dis-
cussed by Thorne in Ref. [185], where all the relevant formulae are already present, and
which we here simply rewrite adopting the gauge-invariant quantities.
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In Ref. [185] the even-parity (orelectric) multipoles are indicated withIℓm and the
odd-parity (ormagnetic) ones withSℓm. They are related to our notation by

(ℓ)Iℓm = Q+
ℓm , (4.32)

(ℓ+1)Sℓm = Q×
ℓm , (4.33)

where(ℓ)fℓm ≡ dℓfℓm/dt
ℓ. From the well known property(Q+,×

ℓm )∗ = (−1)mQ+,×
ℓ−m,

where the asterisk indicates complex conjugation, one can rewrite Eq. (4.20) of Ref. [185]
in a more compact form. Following Ref. [168] where the lowestmulti-polar contribution
was explicitly computed in this way, it is convenient to combine the components of the
linear momentum flux in the equatorial plane in a complex number asFx + iFy. The
multi-polar expansion of the flux vector can be written as

Fx + iFy =

∞∑

ℓ=2

ℓ∑

m=0

δm

(
Fℓm
x + iFℓm

y

)
, (4.34)

Fz =
∞∑

ℓ=2

ℓ∑

m=0

δmFℓm
z , (4.35)

whereδm = 1 if m 6= 0 andδm = 1/2 if m = 0. Each multipole reads

Fℓm
x + iFℓm

y ≡ (−1)m

16πℓ(ℓ+ 1)

{
− 2i

[
a+
ℓmQ̇

+
ℓ−mQ

×
ℓm−1 + a−ℓmQ̇

+
ℓmQ

×
ℓ −(m+1)

]

+

√
ℓ2(ℓ− 1)(ℓ + 3)

(2ℓ+ 1)(2ℓ+ 3)

[
b−ℓm

(
Q̇+
ℓ −mQ̇

+
ℓ+1 m−1 +Q×

ℓ −mQ̇
×
ℓ+1 m−1

)

+ b+ℓm

(
Q̇+
ℓmQ̇

+
ℓ+1 −(m+1) +Q×

ℓmQ̇
×
ℓ+1 −(m+1)

) ]}
, (4.36)

Fℓm
z ≡ (−1)m

8πℓ(ℓ+ 1)

{
2m Im

[
Q̇+
ℓ−mQ

×
ℓm

]
+ cℓm

√
ℓ2(ℓ− 1)(ℓ+ 3)

(2ℓ+ 1)(2ℓ + 3)

Re
[
Q̇+
ℓ−mQ

+
ℓ+1m +Q×

ℓ−mQ̇
×
ℓ+1m

]}
, (4.37)

and

a±ℓm ≡
√

(ℓ±m)(ℓ∓m+ 1) , (4.38)

b±ℓm ≡
√

(ℓ±m+ 1)(ℓ±m+ 2) , (4.39)

cℓm ≡
√

(ℓ−m+ 1)(ℓ −m+ 1) . (4.40)

Note that here bothFℓm
x andFℓm

y arereal numbers and are obtained as the real and imag-
inary part of the right-hand-side of Eq. (4.36). For a general system without symmetries
one is expectingFℓm

z to be nonzero. However, our initial data set-up, an inspiralling bi-
nary with spins anti-aligned and parallel to the orbital angular momentum, implies that
the linear momentum flux vector is completely contained in the equatorial plane of the
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system and so thatFℓm
z = 0 by construction. Since I am imposing equatorial symmetry

(i.e., invariance forθ → π − θ) we have that multipoles withℓ + m = even are purely
even-parity (i.e., Q+

ℓm 6= 0 andQ×
ℓm = 0 ) and those withℓ + m = odd are purely

odd-parity (i.e.,Q+
ℓm = 0 andQ×

ℓm 6= 0).

We have validated both methods by measuring the recoil velocity for a binary system
of nonspinning black holes having a mass ratio of2/3 at an initial separation of4.1M .
The results of this calibration extracted atr = 50M are shown in Fig.4.6, which reports
the evolution of the kick velocity usingΨ4 (solid lines), and the gauge-invariant quantities
when the summation in (4.36) is truncated to the first6 multipoles (dashed lines), which
we have found to be sufficient to show convergence. Indicatedwith symbols are the
estimates and relative error bars obtained by [136] (circle) and by [139] (star).

We note that because the binary system starts evolving at a finite separation, it will
have already gained a net linear momentum that can influence the value of the final kick.
Computing this initial linear momentum amounts to selecting a proper constant in the inte-
gration of (4.29) or (4.36). Fortunately, this is rather straightforward to do and amounts to
determining the direction in 3-space in which the center of mass of the system is moving
initially. In practice, we plot the evolution of thex andy-components of the kick velocity
(thez-component is zero because of symmetry) and calculate the vector to the center of
the spiral generated as the evolution proceeds. This vectoris then composed with the final
one, yielding the final kick; note that being a vector this integration constant is not simply
an additive constant for the kick velocity|v|kick. In Fig. 4.6, we have plotted the effect of
including this constant, comparing the case where it is set to zero [set of curves(a)], with
a value set by extrapolating the recoil backwards to compensate for the small but nonzero
initial linear momentum [set of curves(b)]. In the first case we find agreement with [139],
while in the second case the good agreement is with [136].

A validation of this procedure is also rather straightforward: only an accurate estimate
of the initial momentum yields a monotonic evolution of the kick velocity (or, in the case
of very close binaries, reduces the oscillations considerably); any different choice would
yield the oscillations seen in curves(a) (cf., Fig. 1 of ref. [136] or Fig. 3 of ref. [139]).
Selecting the correct integration constant becomes less important as the separation of the
binary is increased (see also the discussion below), but it can easily lead to errors of10%
or more for the rather close binaries considered here.

4.2.3 Results

This section collects the results of our analysis of the recoil velocity of spin-aligned bina-
ries and discusses the different aspects of the study which combined provide a consistent
and accurate picture of this process. We will first concentrate on the systematic error in-
troduced by the use of initial data with zero linear momentumand on the techniques we
have developed to remove it. We will then discuss the actual computation of the recoil
velocities and their dependence on the spin ratio, highlighting the modes of the radiation
which are largely responsible for the asymmetric emission.Finally, we will discuss the
accuracy of our measurements and our ability to preserve mass and angular momentum
to below1%.
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Figure 4.6: Recoil velocity as function of time for a binary system of nonspinning black
holes with a mass ratio of2/3 at an initial separation4.1M . The set of
curves(a) and (b) differ in the choice of the integration constant, while
the solid and dashed lines show the two independent computations of the
momentum flux [eqs. (4.29) and (4.36)].

Figure 4.7: Recoil velocity as function of time for the sequence of runsi.e., from r0
with −a1 = a2 = 0.586, to r4 with a1 = 0, a2 = 0.586). Note that the
merger is delayed for smaller values of|a1|.
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Figure 4.8: The recoil velocity of the binaryr0 is compared to those of the same system
but with either a larger or a smaller initial separation (i.e., r0l and r0s,
respectively). Note the same recoil velocity is obtained when the integration
constant is properly taken into account, while an error as large as∼ 13% is
made otherwise.

A number of interesting features are worth remarking. Firstly, all of the curves show
a monotonic growth as a result of a suitable choice for the integration constant. Secondly,
the two types of measurements agree to very good precision. Thirdly, binaries that have
a spin ratio closer to zero merge progressively later. It is apparent that the growth rate of
the kick velocity (and hence the rapidity of the inspiral), increases with the asymmetry
in the spins. Fourthly, increasing the initial separation for a binary witha1/a2 = −1
does not change significantly the integration constant chosen for r0, thus indicating that
the kick estimate for the latter is robust. Finally, as in unequal-mass binaries, the largest
contribution to the kick comes from the final parts of the inspiral and is dominated by
the last orbit. However, unlike equal-mass binaries, the post-merger evolution of the kick
velocity is not modified substantially by the quasi-normal mode ringing (cf., Figs. 4.7
and4.6), with the final kick velocity being only slightly smaller than the maximum one
reached during the evolution.

As predicted by the PN expression (4.41), the final velocities shown in Fig.4.7 ex-
hibit a linear dependence with the spin ratio, and this is shown in Fig.4.9, which reports
the asymptotic kick velocities when measured withΨ4 (open circles) or with the gauge-
invariant perturbations (stars). Also indicated are the error bars which include errors from
the determination of the integration constants, from the dependence of the waveforms on
the extraction radii, and from the truncation error.
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Figure 4.9: Kick velocities and error bars for different spin ratios; the dashed lines show
a linear fit of all the data when the point ata1/a2 = 1 is given an infinite
weight since|v|kick = 0 for a1 = a2.

The data points in Fig.4.9are not the only ones available and indeed a binary system
with a1/a2 = 1 is bound to produce a zero kick velocity. The dashed lines in Fig. 4.9
represent a linear fit of all the data when the point ata1/a2 = 1 is given an infinite weight
to account for|v|kick = 0 whena1 = a2 (short-dashed line forΨ4 and long-dashed for

Q
(e,o)
ℓm ). These lines are only illustrative and bear a physical significance only if the linear

dependence should hold for all the possible values of the spin-ratio.

4.2.4 Initial transients in the waveforms

Both Eqs. (4.29) and (4.36) provide an expression of the recoil velocity in terms of the
radiated (linear) momentum per (infinitesimal) time interval. A time-integration of those
equations is needed in order to compute the recoil and this obviously opens the question
of determining an integration constant which is in practicea vector. Fortunately, this
integration constant has here a clear physical meaning and it is therefore easy to compute.
In essence it reflects the fact that at the time the simulationis started, the binary system
has already accumulated a non-vanishing net momentum as a result of the slow inspiral
from an infinite separation.

Since the initial data is constructed so as to have a vanishing linear momentum, there
will be a inconsistency between this assumption and the actual evolution of the initial
data. Stated differently, the numerical evolution of the Einstein equations will soon tend
to a spacetime which is different from the initial one and which corresponds to one with a
net linear momentum. This momentum is the one that the binaryhas gained when inspi-
ralling from t = −∞ till t = 0. Calculating the integration constant amounts therefore to
computing the vector accounting for this mismatch and is essential for a correct measure-
ment of the recoil velocity. The error made when neglecting this constant, as routinely
done in numerical-relativity calculations, inevitably produces a systematic deviation from
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the correct answer and, as we will show in the next section, itcan altogether prevent from
having the correct qualitative behavior.

The relevance of this integration constant depends on the initial separation and it is
more important for binaries that start their evolution initially quite close. The tighter the
binary is, the larger the emitted momentum per unit time and the more important it is
to evaluate the initial mismatch. Fig.4.8 helps to illustrate this point. The figure shows

the time evolution of the recoil velocity|v|kick ≡
√
v2
x + v2

y for the same binary system

having spin ratioa1/a2 = −1 but with increasing initial separation. More precisely, we
consider systemsr0l, r0 andr0swhich differ only in the initial separation, which is about
8.4, 6.0 and5.6M , respectively. The data Fig.4.8is properly shifted in time so as to have
the curves overlap and shows thatonly when the integration constant is properly taken
into account, do the three simulations yield the same recoilvelocity (cf., solid, dashed,
and dotted lines). On the other hand, when the integration constant is not included in the
calculation, different evolutions will yield different estimates, with a systematic error that
can be as large as13% (cf., long-dashed and dot-dashed lines) and is clearly unacceptable
given that the overall precision of the simulations is below1% (cf., Figs.4.15–4.16and
the discussion in Sect.4.2.7).

Besides providing the right answer, the calculation of the integration constant also
results in a considerable saving in computational costs. The complete dynamics of the
binary r0l including the merger and ringdown, in fact, requires simulations for about
600M ; the same answer in terms of recoil velocity can be obtained with the systemr0s,
whose dynamics is fully accounted for with a simulation lasting only for340M .

To compute the integration constant it is sufficient to look carefully at the evolution in
the velocity-space of the two componentsvx andvy of the recoil velocity (because of the
symmetry thez-component is zero but the method described here can be easily extended
to the case in whichvz 6= 0). This is shown in the left panel of Fig.4.10, which reports
the track of the “center of mass” for systemr0 in such a space. Different types of line
refer to different intervals in time during the evolution and, for an observer atr

E
= 50M ,

the dotted one refers tot . 50M , the dashed one to50M . t . 75M , the continuous
one to75M . t . 183M , and finally the long-dashed one tot & 183M .

For t . 50M the system undergoes very little evolution in velocity-space (cf., dotted
line in the inset within the inset of the left panel) but a rapid change, lasting for about
25M , takes place as the radiation reaches the observer. The radiation received has in-
formation about the “correct” linear momentum of the spacetime which is a solution of
the Einstein equations for systemr0 as if it had inspiraled from infinity, and thus rapidly
moves the center of mass to a net nonzero recoil velocity (cf., almost-straight dashed line
in the inset in the left panel). Once the system has adjusted for the proper linear momen-
tum, the evolution proceeds as expected, with the recoil velocity vector slowly tracking a
spiral in velocity space. This is an important point which weprefer to underline: the rate
of change of linear momentum is very large only initially andthis is because as the binary
migrates from the initial non-radiating state (the data is conformally flat) to the consistent
radiating state, it will emit the amount of linear momentum it would have emitted when
inspiralling from infinite separation. After this burst of linear momentum, the evolution
of the recoil velocity is minute, essentially until it growsvery rapidly during the last orbit.
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Figure 4.10:Left panel:Evolution in velocity space of the recoil-velocity vector.Very
little variation is recorded before the radiation reaches the observer atr

E
=

50M (dotted lines in the two insets). The absence of the proper linear
momentum in the initial data triggers a rapid and an almost straight-line
motion (dashed line) of the center of the spiral away from theorigin of
coordinates during the initial stages of the evolution. After this transient
motion, the evolution is slower, with the spiral progressively opening up
(solid line). The vector to the center of the spiral corresponds to the initial
linear momentum of the spacetime and is used as integration constant for
Eqs. (4.29) and (4.36). The final part of the evolution is characterized by a
change in the spiral pattern (long-dashed line) as a result of the interaction
of different modes in the ringdown of the final black hole. Note that the
figure has been rotated clockwise of about30◦ to allow for the two insets.
Right panel: Initial behavior of the recoil velocity (upper graph) and of
the waveform (Q+

22) for modelr0 (lower graph). This figure should be
compared with the initial vector evolution of the recoil velocity shown in
the left panel where the same types of lines have been used forthe different
stages of the evolution.
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Figure 4.11:Left panel:The same as in the left panel of Fig.4.10but for systemr7.
Shown in the inset is the sudden re-orientation of the recoilvelocity vector
during ringdown and corresponding to a new spiral with different aperture
(long-dashed line). Although more pronounced inr7, the appearance of
this “hook” at ringdown is seen all the members of the sequence. Right
panel: The same as in the left panel of Fig.4.10but for systemr7. The
upper graph concentrates on the final stages of the evolutionin of the recoil
velocity and on the appearance of a second peak during ringdown (long-
dashed curve). The lower graph shows the same but in terms of theQ+

22

waveform. A discussion of these final stages of the evolutionis made in
Sect.4.2.6.
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Computing the integration constant consists then in calculating the position of the
center of the spiral and this can be done either by a simple inspection of a graph in the
velocity-space, from which one computes the center of the spiral or, equivalently, by
searching for the initial vector that would lead to an essentially monotonicin time growth
of the recoil velocity. The latter procedure does not require a human judgment it yields
the same answer (to less than1 km/s) as the one guessed by looking at the velocity space.

The right panel of Fig.4.10 shows the same evolution as the left one, but through
different quantities. The upper panel, in particular, shows the time evolution of the recoil
velocity and the rapid changes it undergoes initially when the radiation first invests the ob-
server. The lower panel, on the other hand, shows theQ+

22 amplitude and highlights that,
while the initial burst of radiation stops aftert ∼ 50M (cf., dotted line), the waveform is
still not fully consistent untilt ∼ 75M (cf., dashed line).

It is worth remarking that the evolution of the recoil vectorin the velocity-space has
another interesting feature during the final stages of the evolution and when the final black
hole is ringing down. This is marked as a long-dashed line in the left panel of of Fig.4.10
and shows a break in the building of the spiral and the appearance of a new spiral with a
different aperture (we refer to this feature as “the hook”).This is more evident in the left
panel of Fig.4.11, which shows the evolution of the recoil vector for the binary systemr7
and offers a magnification of the hook in the inset. The hook accounts for a rapid change
in the recoil velocity and it is due to the interplay of different modes during the ringdown.
This is clearly illustrated in the right panel of Fig.4.11which similarly reports the time
evolution of the recoil velocity and the final stages of theQ+

22 waveform.

4.2.5 Recoil velocities

The recoil velocity has been calculated for the sequence of models listed in Table4.1.
As mentioned in Sect.4.1.1, this sequence corresponds to equal-mass black holes, whose
initial spins are unequal, though always aligned with thez-axis. Ther0 model has equal
but opposite spins, while ther8 model has equal and aligned spins on the black holes, with
other models corresponding to intermediate values, as outlined in Section4.1.1. Since the
total initial orbital angular momentumL of the system is chosen to be constant over the
sequence, the initial separations of the black holes increases in the sequence, as well as
the time to merger due to spin-spin effects which contributeto an orbital “hang-up” in the
aligned case.

I extract gravitational waves by both the gauge-invariant and theΨ4 methods de-
scribed in the previous section and by interpolating the radiation-related quantities onto
2-spheres at coordinate radiir

E
= 30M , 40M , 50M , and60M . The use of multiple

extraction radii is made to check the consistency of the measurement and the precise value
of the extraction radius has little influence on the actual kick calculation. In the case of
the binary systemr0 we have verified that the recoil velocity yields the same value with
differences that are smaller than2 km/s for extraction 2-spheres at distances larger than
30M . As a result, we have usedr

E
= 50M as the fiducial distance for an observer in

the wave-zone and all of the results presented hereafter will be made at this extraction
2-sphere. A validation that the gauge-invariant quantities have the proper scaling with



127 4.2 Kicks

Figure 4.12:Left panel:Recoil velocity as a function of the spin asymmetry parameter
a1/a2 for the models listed in Table4.1. Indicated with a continuous lines
are the results obtained viaΨ4, while a dashed line is used for the gauge-
invariant quantitiesQ+,×

ℓm . Right panel: Final recoil velocity calculated
with both the useΨ4 (empty circles) and the gauge-invariant quantities
(stars). Shown in the inset is the incorrect scaling obtained when the cor-
rection for the integration constant is not made.

radius is presented in AppendixA.6.

The evolution of the recoil velocity for the entire sequencelisted in Table4.1 is dis-
played in the left panel of Fig.4.12. It is apparent that the suitable choice of the integration
constant discussed in the previous section yields early evolutions that are always mono-
tonic in time and that, as expected, the largest recoil velocity is generated for the case in
which the asymmetry is the largest, namely for the binaryr0. The left panel Fig.4.12
also shows that the profile for each case is rather similar, with the largest contribution to
the kick velocity being generated in a period of about80M , corresponding roughly to the
timescale of the last orbit and merger.

It is worth noting that during the final stages of the evolution, the recoil velocity is not
monotonic but shows at least two peaks, whose relative amplitude depends on the spin
ratio. For spin ratios∼ −1 the first peak is hardly visible, while the second one is the
most pronounced one. As the spin ratio increases, however, the first peak becomes more
prominent and for spin ratios∼ 1 it becomes comparable with the second one or even
larger for binariesr6 andr7. As mentioned in the previous Section and further discussed
in the following one, the appearance of these peaks is related to the interplay of different
mode-contributions during the ringdown. The second peak, in particular, can be associ-
ated to a rapid change in the recoil-velocity vector and is behind the characteristic “hook”
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Table 4.3: Final kick velocities in units ofkm/s for the models listed in Tab.4.1.
Columns two and three show the values obtained using the gauge-invariant
quantitiesQ×,+

ℓm andΨ4 respectively and taking into account the integration
constant. Columns four and five, on the other hand, show the results obtained
when ignoring the integration constant. The same data are shown in the right
panel of Fig.4.12.

Model Q×,+
ℓm Ψ4 Q×,+

ℓm ,no ic Ψ4,no ic
r0 263.2 261.8 288.9 288.4
r1 222.4 221.4 211.9 210.6
r2 187.1 186.2 174.8 173.3
r3 143.3 144.0 155.9 157.3
r4 104.8 106.1 100.0 101.3
r5 81.4 81.5 76.9 77.0
r6 45.6 45.9 55.4 56.2
r7 19.4 20.6 13.8 14.8
r8 0.0 0.0 0.0 0.0

discussed in the left panels of Figs.4.10 and4.11. As a representative measure of the
accuracy in determining these recoil velocities, we have carried out simulations also for
the binary systemr8, in which the black holes have identical spin and thus from which no
kick should result. The computed recoil velocity has been found to be10−4 km/s, clearly
indicating that our evolutions do an excellent job in preserving the orbital symmetry of
these binaries.

The recoil velocities attained by the final black holes and shown for in the left panel
of Fig 4.12 can be studied in terms of their dependence on the spin ratioa1/a2, which
can also be regarded as the “asymmetry” parameter of the system, being the largest for
a1/a2 = −1 and zero fora1/a2 = 1. These velocities are collected in Table4.3 and
are shown as a function ofa1/a2 in the right panel of Fig4.12, where I have indicated
with open circles the values obtained usingΨ4 and with stars those obtained using the
gauge-invariant perturbations.

The data in the right panel of Fig4.12 is shown together with its error-bars, which
include errors from the determination of the integration constants, from the truncation
error and from the amount of ellipticity contained in the initial data. We have estimated
these errors to be of5 km/s for binariesr0–r5 and of8 km/s for binariesr6 andr7.
Shown also in the inset is the recoil data obtained when ignoring the integration constant.
When the proper evaluation of the initial transient is not made, the data does not show
the correlation with the spin ratio which is instead shown bythe corrected data. The
correlation found the one predicted by PN studies. Recall that using PN theory at the 2.5
order, Kidder [172] has concluded that in the case of a circular, non-precessing orbit, the
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Figure 4.13:Upper panel: Comparison of the computed data for the recoil velocity
(open circles) with the least-squares fits using either a linear (dotted line)
or a quadratic dependence (dashed line).Lower panel:Point-wise residu-
als computed with the linear (dotted line) or a quadratic fit (dashed line).

total kick for a binary system of arbitrary mass and spin ratio can be expressed as [148]

|v|kick = c1
q2(1 − q)

(1 + q)5
+ c2

a2q
2(1 − qa1/a2)

(1 + q)5

= c̃2a2

(
1 − a1

a2

)
, (4.41)

whereq ≡ M1/M2 is the mass ratio and is equal to one for the binaries considered here,
thus leading to the second form of Eq. (4.41). The coefficientsc1 andc̃2 ≡ c2/32 depend
on the total mass of the system and on the orbital separation at which the system stops
radiating, which is intrinsically difficult to determine with precision since it lies in a region
where the PN approximation is not very accurate. Indeed, we find that the coefficientc2
is not really a constant in the case of equal-mass binaries but, rather, it can be seen to
depend at least linearly on the spin ratio.

This is shown in Fig.4.13, whose upper panel offers a comparison among the com-
puted data for the recoil velocity (open circles) with the least-squares fits using either
a linear (dotted line) or a quadratic dependence (dashed line). It is quite apparent that
a linear dependence ona1/a2, such as the one expected in Eq. (4.41) for c2 = const.
does not reproduce well the numerical data and yields point-wise residuals of the order of
20 km/s. These are shown with a dotted line in the lower panel of Fig.4.13. A quadratic
dependence ona1/a2, on the other hand, reproduces the numerical data very nicely, with
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Figure 4.14:The total kick calculated via Eq. (4.36) up to ℓ = 7 is compared to the
contributions of individual termsq1 andq2, as well as the sum of term
excluding these. In the case of ther0 system (left panel) the spins are
anti-aligned and theq2 term is dominant and theq1 term does not provide
a significant contribution. In the case of ther7 system (right panel), on the
other hand, the spins are essentially aligned and the while the q2 term is
still dominant, theq1 term also makes a significant contribution.

residuals that are of the order of5 km/s, as shown with a dashed line in the lower panel
of the same figure, and thus compatible with the reported error-bars.

We can re-express Eq. (4.41) in the more generic form

|v|kick

(
a2,

a1

a2

)
= |a2|f

(
a1

a2

)
(4.42)

wherea2 plays here the role of a “scale-factor”. The functionf(a1/a2) with a1/a2 ∈
[−1, 1] and maximum ata1/a2 = −1 can then be seen from numerical-relativity calcu-
lations (or higher-order PN approximations) and our least-squares fit suggests the expres-
sion

fquad. = 109.3 − 132.5

(
a1

a2

)
+ 23.1

(
a1

a2

)2

km/s .

(4.43)

The maximum kick velocity for a givena2 is then readily calculated even without a de-
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tailed knowledge of the functionf(a1/a2) as

(|v|kick)
max(a2) = |a2|f(−1) . (4.44)

Using the data reported in Table4.3 for a2 = −0.584 we obtain for|a2| = 1 that the
maximum recoil velocity attainable from a binary system of equal-mass black holes with
spins aligned to the orbital angular momentum is448 ± 5 km/s. This is in very good
agreement with our previous estimate made in Ref. [155] witha smaller sequence and in
equally good agreement with the results reported in Ref. [157].

4.2.6 Mode contributions to the recoil velocity

For the models studied in the previous section we have evaluated Eq. (4.36) including
modes up toℓ = 7. In practice, however, the recoil is strongly determined bythe lower-
mode contributions. In particular, the two terms

q1 ≡ 1

48π

√
30

7
Q̇+

22 Q
+
3−3, (4.45)

q2 ≡ − i

48π
Q̇+

2−2 Q
×
2 1 (4.46)

are the dominant ones. This can be seen in Fig.4.14, where the time evolutions of the
termsq1 andq2 are plotted (dotted and dashed lines, respectively) together with the total
kick calculated via Eq. (4.36) (solid line), and with the contributions from all other terms
up to ℓ = 7 excludingq1 and q2 (long-dashed line). A rapid inspection of the figure
reveals that the kick is dominated in particular by theq2 term, whereas theq1 term has a
magnitude of the order of all the other modes combined. A similar result holds for each
member of the sequence, so that the two contributions determine the final kick to more
that 95%. The mode contributions are vector quantities, just as the kick velocity itself,
and are not always aligned.

This coupling also goes some way to explain some features of the recoil velocity
profiles displayed in Fig.4.12. As mentioned in the previous section, the binariesr4 to
r8 show a double peak in the evolution of the kick velocity before it settles down to the
final value. The same feature can be seen in the more asymmetric r0 to r3 binaries, where
it appears as a flattening of the slope near the maximum. Sincethe two peaks are shown
both by the gauge-invariant and by theΨ4-based techniques we do not believe them to be a
simple numerical artifact. Overall, the properties of the recoil velocity near its maximum,
and before it settles to the final value, are determined by therelative phases of the two
contributions identified above. An analysis of the termsq1 andq2 in vector-space reveals
that when they are relatively aligned at the peak of the acceleration, there is a clear single
peak in the evolution.

4.2.7 Angular Momentum and Mass Conservation

In this section we discuss the radiated angular momentum andenergy during the evolution
of the different initial-data sets. I compute the radiated angular momentum and mass
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by calculating the difference between the initial data and that of the final black hole,
and then compare these quantities with the corresponding ones measured in terms of the
emitted gravitational radiation. The differences in the two independent estimates serve as
indicators of the conservative properties of the code.

The radiated angular momentum can be simply written as the difference between the
initial and final values

Jrad = Jfin − Jini , (4.47)

where, as a result of the conformal flatness of the initial-data slice,Jini is given by the
simple expression (see for example [165–167])

Jini ≡ J
ADM

= C1 × p1 + C2 × p2 + S1 + S2 . (4.48)

HereCi, pi andSi are the position, the linear momentum and the spin of thei-th black
hole. The final angular momentumJfin, on the other hand, is set to be equal to the spin
of the final black hole after all the radiation has left the computational domain. Two
different methods are used to obtain this measure, both of which are based on properties
of the apparent horizon of the final hole.

The first method employs the isolated/dynamical horizon formalism and searches for
a rotational Killing vectorφa on the final apparent horizon so as to measure the spin of
the final black hole as [186–188]

J = − 1

8π

∮

S
Kabφ

ar̂bd2V . (4.49)

This expression (4.49) is valid on any sphere where a Killing vectorφa can be found,
and is therefore a quasi-local measure of the angular momentum. In particular, at large
distances where the spacetime is close to axisymmetric, there is a good approximation
to an angular Killing vector, and we can apply this expression to determine the angular
momentum of the spacetime. Note also that Eq. (4.49) is identical to the ADM angular
momentum when evaluated at spacelike infinity [187,188].

The second method, assumes that the final black hole has settled to a Kerr one and uses
the rotational-induced distortion of the apparent horizonof the final black hole to estimate
its spin. DefiningCp andCe to be respectively the apparent horizon’s polar and equatorial
proper circumferences, their ratioCr ≡ Cp/Ce will undergo damped oscillations as the
perturbed black hole settles to a Kerr state through the quasi-normal ringing. The final
value ofCr can be expressed as a nonlinear function of the dimensionless spin parameter
a = J/M2 as [189–191]

Cr(a) =
1 +

√
1 − a2

π
E

(
− a2

(1 +
√

1 − a2)2

)
, (4.50)

whereE(k) is the complete elliptic integral of the second kind

E(k) =

∫ π/2

0

√
1 − k sin2 θdθ . (4.51)
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Figure 4.15:Left panel: Dependence on the spin ratio of the initial total angular mo-
mentumJini [as computed from Eq. (4.48)], of the radiated angular mo-
mentumJrad [as computed through the gauge-invariant waveforms], and
of the final spin of the black holeJfin. All quantities show a linear behav-
ior, whose coefficient are collected in Table4.4. Right panel:Relative er-
ror ∆J/Jini in the conservation of the angular momentum [cf., Eq. (4.55)].
Different curves refer to whether the final spin of the black hole is com-
puted using the isolated/dynamical horizon formalism (triangles) or the
distortion of the apparent horizon (squares). In both casesthe error is of
about1% at most for simulations at the medium resolution.
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Figure 4.16:Left panel: Dependence on the spin ratio of the ADM massM
ADM

, of
the scaled radiated energyMrad [as computed through the gauge-invariant
waveforms and scaled by a factor of10 to make it visible], and of the
final mass of the black holeMfin. All quantities show linear behaviors,
whose coefficients are collected in Table4.4. Right panel:Relative error
∆M/Mini in the conservation of the energy [cf., Eq. (4.57)]. Note that the
error is of about0.5% at most for simulations at the medium resolution.
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By inverting numerically Eq. (4.50) we obtaina from the late timeCr that is measured
from the apparent horizon shape. For computingJ one multipliesa by the square of the
final mass, which we take to beM

ADM
−Mrad. An alternative choice involving the total

mass Eq. (4.17) as measured from the apparent horizon would lead to essentially the same
results.

As mentioned at the beginning of this section, the determination of the radiated angu-
lar momentum can also be done using directly the asymptotic waveform amplitudesh+

andh× as [182,192,193]

d2J

dt dΩ
= − r2

16π

(
∂th+∂φh

∗
+ + ∂th×∂φh

∗
×

)
, (4.52)

where the amplitudeh+ and h× themselves can be expressed either in terms of the
Zerilli-Moncrief gauge-invariant variablesQ+

ℓm, Q×
ℓm or, alternatively, in terms of the

Newman-Penrose scalarΨ4. A comparison between the two approaches is presented in
AppendixA.6, where it is shown that the differences are minute. Because of this, hereafter
we will refer to asymptotic amplitudes measured in terms of the gauge-invariant variables
only. Additional details on the resolution of the extraction 2-sphere are also presented in
AppendixA.5.

The left panel of Fig.4.15summarizes this comparison by showing, as functions of
the spin ratioa1/a2, Jfin from Eq. (4.49), Jrad from Eq. (4.52) both adding nicely to yield
Jini. Note thatJini is growing linearly as it is obvious from Eq. (4.48), but also that that a
similar behavior is shown by the radiated angular momentum (and hence by the final spin
of the black hole). Using a linear fitting we can derive phenomenological expressions for
the relative losses of angular momentum

Jrad

Jini
= ξJrad

(
a1

a2

)
+ χJrad , (4.53)

and the relative spin-up of the final black hole

Jfin

Jini
= ξJfin

(
a1

a2

)
+ χJfin . (4.54)

The fitted values forξJrad,fin andχJrad, fin are presented in Table4.4 and readily indicate
that the system looses24% of its initial orbital angular momentum in the case of anti-
aligned spins and up to34% for aligned spins.

Expressions (4.53) and (4.54) do not have a PN counterpart and yet, since they depend
only on the spin-ratio, they represent simple and powerful ways of estimating both the
efficiency in the extraction of angular momentum and the spinof the final black in a
binary merger when the spins are orthogonal to the orbital plane. This information could
be easily injected in thoseN -body simulations in which the interaction of binary black
holes is taken into account [194] and thus yield accurate estimates on final distribution of
black-hole spins.

Since we have two independent and different ways of computing Jrad [i.e., either from
Eq. (4.52) or from Eq. (4.47)] we can quantify our ability to conserve angular momentum
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Table 4.4: Coefficients for the phenomenological expressions (4.53) and (4.54) (and
the corresponding coefficients for∆Mrad,fin/M ) by means of which it is
possible to compute the relative losses of energy and angular momentum, as
well as the final mass and spin of the black hole in binary mergers in which
the spins are orthogonal to the orbital plane.

ξJrad 0.0513 ξMrad 0.0118
χJrad 0.2967 χMrad 0.0437
ξJfin -0.0513 ξMfin -0.0118
χJfin 0.7033 χMfin 0.9563

Table 4.5: Final and radiated angular momenta and masses, computed from the gauge-
invariant waveforms. Shown is also the radiated spin and mass relative to
their initial values, which are listed in Tab.4.1.

a1/a2 Jfin Jrad Jrad/JADM
Mfin Mrad Mrad/MADM

r0 -1.00 0.6244 0.2008 0.2434 0.9536 0.0320 0.0325
r1 -0.75 0.6391 0.2222 0.2580 0.9507 0.0348 0.0353
r2 -0.50 0.6530 0.2449 0.2727 0.9482 0.0374 0.0380
r3 -0.25 0.6676 0.2670 0.2857 0.9461 0.0396 0.0402
r4 0.00 0.6827 0.2886 0.2971 0.9439 0.0420 0.0426
r5 0.25 0.6966 0.3106 0.3084 0.9412 0.0450 0.0456
r6 0.50 0.7075 0.3363 0.3222 0.9376 0.0488 0.0495
r7 0.75 0.7181 0.3626 0.3355 0.9344 0.0523 0.0530
r8 1.00 0.7292 0.3878 0.3471 0.9315 0.0557 0.0564

by measuring the normalized residual

∆J

Jini
≡ Jfin + Jrad − Jini

Jini
. (4.55)

This is shown in the right panel of Fig.4.15and the two different lines refer to the two
measures of the final spin of the black hole,i.e., either via the isolated-horizon formal-
ism (triangles) or via the distortion of the apparent horizon (squares). In both cases the
error is extremely small, ranging between1.1% and0.2% for simulations at the medium
resolution, and thus providing convincing evidence of our accuracy in the preservation of
angular momentum. It should be noted that while there seems to be a small advantage in
using the isolated horizon measure, the differences are toosmall to be significant. A small
change in the procedure, such as the use of the mass measured via the apparent horizon
via Eq. (4.50) in place ofMini −Mfin (as we are doing in this figure), would counter the
advantage.

We proceed to a similar analysis for the conservation of the mass/energy of the sys-
tem by considering the difference between the the initial mass and final plus the radi-
ated masses. As for the initial mass we obviously consider the ADM mass of the sys-
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temM
ADM

, while the radiated energyMrad is computed through the gravitational wave-
forms [182,195,196]

d2E

dtdΩ
=

r2

16π

(∣∣∣ḣ+

∣∣∣
2
+
∣∣∣ḣ×
∣∣∣
2
)
. (4.56)

As for the angular momenta, we have chosen to express the right hand side of Eq. (4.56)
in terms of the Zerilli-Moncrief functions and to use as finalmass of the black holeMfin,
the one given by Eq. (4.17) and measured via the apparent horizon.

The left panel of Fig.4.16showsM
ADM

, Mfin andMrad, with the latter rescaled the
radiated by a factor of ten to make it more visible. Also in this case there is a clear linear
behavior of both the radiated energy and of the final mass of the black hole in terms of
the spin ratio. As a result, phenomenological expressions of the type (4.53) and (4.54) are
possible also forMfin andMrad. The corresponding values of the coefficientsξMrad,fin and

χMrad,fin are also presented in Table4.4.

Finally, to check the precision at which the energy is conserved, and in analogy to
Eq. (4.55), we have computed the relative error

∆M

M
ADM

≡ Mfin +Mrad −M
ADM

M
ADM

, (4.57)

and plotted this as a function of the spin ratio in the right panel of Fig.4.16. Clearly, also
the energy losses are extremely small and for all the binaries in the sequence, the error in
the energy balance is below0.52% at the medium resolution. Table4.5 summarizes the
numerical results for the radiated energy and angular momentum for the members of the
sequence.

4.3 Spins

While the recent possibility of measuring accurately the final spin through numerical-
relativity calculations represents an enormous progress,the complete coverage of the full
parameter space uniquely through simulations is not a viable option. As a consequence,
work has been done to derive analytic expressions for the final spin which models the
numerical relativity data but also exploit as much information as possible from perturba-
tive studies, and from the symmetries of the system [1, 8, 87,197]. In this sense, these
approaches do not amount to a blind fitting of the numerical-relativity data, but, rather,
use the data to construct a physically consistent and mathematically accurate modelling of
the final spin. Despite a concentrated effort in this direction, the analytic expressions for
the final spin could, at most, cover 3 of the 7 dimensions of thespace of parameters [8].
Here, I show that without additional fits and with a minimal set of assumptions it is pos-
sible to obtain the extension to the complete space of parameters and reproduce all of the
available numerical-relativity data.

A number of analytical approaches have been developed over the years to determine
the final spin of a binary coalescence [5,152,197–199]. Veryrecently, a method, inspired
by the dynamics of a test particle around a Kerr BH, has been proposed for generic bi-
naries ( [4], BKL hereafter). The approach assumes that the angular momentum of the
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final BH is the sum of the individual spins and of the orbital angular momentum of a test
particle on the last-stable orbit of a Kerr BH with the same spin parameter as that of the
final BH.

Here, we combine this with the data obtained in recent simulations to provide a phe-
nomenological but analytic estimate for the final spin in a binary BH system with arbitrary
mass ratio and spin ratio, but in which the spins are constrained to be parallel to the orbital
angular momentum. In addition to the data presented in [1], Iadd three simulations of
equal-mass, high-spin binaries and three simulations of unequal-mass, spinning binaries
(see Table4.6). Other data is taken from unequal-mass, nonspinning binaries [3, 7, 139],
and of equal-mass, spinning binaries [1,2]; all of the AEI data is summarized in Table4.2.

4.3.1 Methods and Results

Analytic fitting expressions forafin have so far been built using binaries having spins
that are eitheralignedor antialignedwith the initial orbital angular momentum. This is
because in this case both the initial and final spins can be projected in the direction of
the orbital angular momentum and it is possible to deal simply with the (pseudo)-scalar
quantitiesa1, a2 andafin ranging between−1 and+1. If the BHs haveequal massbut
unequalspins that are eitherparallel or antiparallel, then the spin of the final BH has
been shown to be accurately described by the simple analyticfit [1]

afin(a1, a2) = p0 + p1(a1 + a2) + p2(a1 + a2)
2 . (4.58)

When seen as a power series of the initial spins, expression (4.58) suggests an interesting
physical interpretation. Its zeroth-order term, in fact, can be associated with the (dimen-
sionless) orbital angular momentum not radiated in gravitational waves and amounting
to ∼ 70% of the final spin at most. The first-order term, on the other hand, can be seen
as the contributions from the initial spins and from the spin-orbit coupling, amounting
to ∼ 30% at most. Finally, the second-order term, can be associated with the spin-spin
coupling, with a contribution to the final spin which is of∼ 4% at most.

If the BHs haveunequal massbut spins that areequalandparallel, the final spin is
instead given by the analytic fit [8] as a function of the two free variables in the problem:
the symmetric mass ratioν ≡ M1M2/(M1 + M2)

2 and the spin of the initial BHsa ≡
J/M2, i.e., afin ≡ Jfin/M

2
fin = afin(a, ν). By constructiona1 = a2 = a, and~a/|~a| =

±~L/|~L|, where~L is the orbital angular momentum. We next expressafin as a third-order
polynomial ofν anda

afin = s0 + s1a+ s2a
2 + s3a

3 + s4a
2ν + s5aν

2 +

t0aν + t1ν + t2ν
2 + t3ν

3 . (4.59)

Expression (6.9) is a lowest-orderansatz. It intends to capture the behaviour of a function
known exactly only in the extreme mass-ratio limit (EMRL) and which has support from
numerical simulations in two restricted regimes:i.e., ν = 1/4; 0 ≤ |a| . 0.75 and
0.16 . ν ≤ 1/4; a = 0. A-priori there is no reason to believe expectation thatafin(ν, a)
from the proposed fit will capture the general behaviour well, but it does.
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Table 4.6: Initial parameters of the new binaries computed at the AEI. The different
columns contain the initial spina, the symmetric mass ratioν, half of the
initial separationx/M = 1

2
(x1 − x2), the dimensionless initial angular mo-

mentumJ̃ = J/(µM), the numerical and fitted values forafin and the cor-
responding relative error.

a ν x/M J̃ a
fin

afit
fin

|err.| (%)
t8 -0.5840 0.2500 3.1712 2.432 0.4955 0.4981 0.53
ta8 -0.3000 0.2500 3.7078 3.000 0.5941 0.5927 0.23
tb8 -0.8000 0.2500 3.8082 2.200 0.4224 0.4227 0.08
tb8ℓ -0.8000 0.2500 4.8600 2.400 0.4266 0.4227 0.92
p1 -0.8000 0.1580 3.2733 0.336 0.0050 0.0046 9.89
p2 -0.5330 0.1875 3.3606 1.872 0.2778 0.2794 0.57
p3 -0.2667 0.2222 3.4835 2.883 0.5228 0.5216 0.23

Given the available numerical estimates, it is possible to calculate the coefficientss0–
s5, andt0–t3 by simply performing a two-dimensional (2D) least-square fit of the data.
This, however, would require a lot of care and is likely to lead to inaccurate estimates
for the coefficients. This is due mostly to the fact that the space of parameters presently
accessible to numerical simulations is rather small. Reliable results are in fact available
only for spins|a| . 0.8 and mass ratiosq ≡ M2/M1 & 0.25 and thus corresponding to
ν & 0.16. However, it is possible to exploitexactresults which hold in the EMRL,i.e., for
ν = 0, to constrain the coefficients in expression (6.9). It is worth emphasizing that the
EMRL results are not only exact, but also in regimes that numerical relativity simulations
cannot probe. More specifically, we can exploit that in the EMRL the final spin cannot be
affected by the infinitesimally small BH. In practice, this amounts to requiring that

afin(a, ν = 0) = a , (4.60)

which constrains four of the six coefficients

s0 = s2 = s3 = 0 , s1 = 1 . (4.61)

Additional but non-exact constraints on the coefficients can also be applied by ex-
ploiting the knowledge, near the EMRL, of the functional dependence ofafin on the mass
ratio. A convenient way of doing this is suggested by BKL, andwithin this approach it is
possible to perform a Taylor expansion ofafin for ν ≪ 1 and determine that

a′fin

∣∣
(a=1,ν=0)

= 2(
√

3/3 − 1) , a′fin

∣∣
(a=0,ν=0)

= 2
√

3 ,

a′fin

∣∣
(a=−1,ν=0)

= 2(1 + 19
√

15/45) , (4.62)

wherea′fin ≡ ∂afin/∂ν. The coefficients in (6.9) are thens4 =
√

3(19
√

5 − 75)/45,
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Figure 4.17:Global dependence of the final spin on the symmetric mass ratio and on the
initial spins as predicted by expression (4.63). Squares refer to numerical
estimates while circles to the EMRL constraints.

t1 = 2
√

3, t0 = [
√

3(15 − 19
√

5) − 90]/45. While this may seem a good idea, it leads to
bad fits of the data. We believe this is due to two distinct reasons: (i) the lack of accurate
numerical data for near-extreme BHs,i.e., |a| ≈ 1, and which therefore leads to incorrect
estimates of the coefficients;(ii) expressions (4.62) are analytic but not exact and should
be used with caution. There are, in fact, deviations from analyticity in ν asν → 0, and
as revealed by the presence of integer powers ofν1/5 during the transition between the
last stable orbit and the plunge (see [199]). In the case of non-spinning binaries (a = 0),
it is now possible to verify that the deviations are indeed very small [200], but this check
is not possible for very large spins. In view of this and to make the minimal number of
assumptions, we retain the analytic estimate only for the coefficient t1, so that (6.9) has
five out of ten coefficients constrained analytically

afin = a+ s4a
2ν + s5aν

2 + t0aν + 2
√

3ν + t2ν
2 + t3ν

3 . (4.63)

Determining the remaining five coefficients from a least-square fit of the available
data yields

s4 = −0.129 ± 0.012 , s5 = −0.384 ± 0.261 ,

t0 = −2.686 ± 0.065 , t2 = −3.454 ± 0.132 ,

t3 = 2.353 ± 0.548 , (4.64)

with surprisingly small residuals and large error-bars only for s5. The functional be-
haviour of expression (4.63) and the position of the numerical data points are shown in
Fig. 4.17.
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Figure 4.18:Upper panel: Comparison of the numerical data with the 2D fit
through (4.63) in the case of equal-mass binaries, (ν = 1/4). Empty cir-
cles indicate the AEI data [1], stars the FAU-Jena data [2]],a long-dashed
line the BKL, and a short-dashed one the fit.Lower panel:residuals be-
tween the different estimates and the fit.
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Figure 4.19:Upper panel: Comparison of the numerical data with the 2D fit
through (4.63) in the case of nonspinning binaries. Empty circles indi-
cate the Jena data [3], stars the Goddard data [4]], a long-dashed line the
quadratic EOB fit [5] and a short-dashed line our 2D fit.Lower panel:
residuals between the different estimates and the 2D fit.

4.3.2 Results

The estimate for the final spin in the case of equal masses and the comparison with avail-
able data and estimates is made in Fig.4.18. The upper panel shows the numerical esti-
mates, [circles for the AEI data [1] and stars for the FAU-Jena data [2]], the BKL estimate
and our 2D fit through (4.63). The lower panel shows the residuals between the different
estimates and the 2D fit; these are always of a few percent onlyand become larger for the
BKL estimate whena . 0.

Despite the fact that the cubic dependence assumed in (6.9), expression (4.63) is only
quadraticwith a. Whenν = 1/4, it confirms what was obtained [1], indicating that, for
equal-mass binaries, the next order will be four. Using (4.63) and (6.10) we estimate that
the minimum and maximum final spins for an equal-mass binary areafin = 0.3502±0.03
andafin = 0.9590 ± 0.03, respectively.

For nonspinning binaries, expression (4.63) is cubic inν and a comparison with the
available data and the estimate from the EOB approach combined with test-mass limit
predictions for the ringdown [5] is shown in Fig.4.25. In particular, the upper panel
shows the numerical values, [empty circles for the Jena data[3] and stars for the Goddard
data [4]], a long-dashed line for the quadratic EOB 1D fit [5] and a short-dashed line for
our 2D fit. The residuals in are shown in the lower panel.

A physically useful condition that can be deduced from the 2Dfit are the values of the



143 4.3 Spins

initial spin and mass ratio that will lead to a finalSchwarzschildBH [4, 151]. In practice
this amounts to requiringafin(a, ν) = 0 in (4.63) and this curve in the(a, ν) plane is
shown in the upper panel of Fig.4.20. Binaries on the curve produce Schwarzschild BHs,
while binaries above the curve start with a positive total angular momentum and end with
a positive one; binaries below the curve, on the other hand, start with a positive total
angular momentum and end with a negative one,i.e., with a globalflip. Also shown in
the upper panel of Fig.4.20is the prediction from BKL:a

Schw.
|
BKL

= 2ν
√

3/(2ν − 1).
The two estimates are very similar for all values ofν and small differences appear for
ν & 0.15, where the BKL estimate is less accurate. Shown with a cross is the binaryp1

(cf., Table4.6) which yields a final BH with spinafin = 0.005. The numerical value is
between the BKL prediction and the 2D fit.

The BKL is expected to be particularly accurate forν ≪ 1 and its prediction in this
regime is captured very well by the 2D fit (of course the two predictions are identical for
ν = 0). This is shown in the lower panel of Fig.4.20with different curves referring to
ν = 0.001 , 0.01 and0.1; interestingly, the differences are small even forν = 0.1. It
is simple to derive the value ofa which will produce a final BH with thesamespin as
the initial ones. This amounts to requiring thatafin(a, ν) = a in (4.63) and the resulting
solution is shown in Fig.4.21; the axisν = 0 is a trivial solution and a magnification of the
behaviour away from the EMRL is shown in the inset. For equal-mass binaries the critical
value isacrit = 0.9460, in good agreement with the BKL estimateacrit & 0.948 [4].
The minuteness of the region for whichafin < a (dashed region) suggests that BHs from
aligned-spins binaries are typically spun-up by mergers.

By settingν = 1/4 and2a = a1 + a2 in (4.63), we verify that the coefficientss1–
s5 andt0–t3 coincide, within the error-bars, with the coefficientsp0, p1 andp2 reported
in [1] for equal-mass, unequal-spin binaries. The fact thatthe fit here is equivalent to, but
has been independently derived from, the one for the equal-mass, unequal-spin binaries,
is an indication of its robustness. Indeed, it is possible toextend (4.63) to the whole
(a1, a2, ν) spacei.e., to describe the final spin of generic aligned, unequal-spin, unequal-
mass BH binaries, by replacinga with (a1 + a2q

2)/(1 + q2). The resulting expression
reduces to (4.63) for unequal-mass, equal-spin binaries, and to the one in [1] for equal-
mass, unequal-spin binaries. Our suggested extension of (4.63) to the(a1, a2, ν) space is
the simplest one which recovers, for aligned spins, the well-tested limits of equal-mass,
unequal-spins and unequal-mass, equal-spins.

The dependence of the final spin on the mass ratio in the case ofextreme aligned BHs
is particularly challenging to calculate and not yet investigated accurately by numerical
calculations. The predictions of expression (4.63) in this limit amount to mere extrapola-
tions and are therefore accurate to a few percent at most. As an example, whena = 1, the
fit (4.63) is a non-monotonic function with maximumafin ≃ 1.029 for ν ≃ 0.093; this
clearly is an artifact of the extrapolation.

afin(a, ν) = a+ s4a
2ν + s5aν

2 + t0aν +

2
√

3ν + t2ν
2 + t3ν

3 , (4.65)
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Figure 4.20: Upper panel: Set of initial spins and mass ratios leading to a final
Schwarzschild BH:i.e., afin(a, ν) = 0. The two curves refer to the BKL
estimate (long dashed) and to the 2D fit (short dashed), respectively. Indi-
cated with a star is a numerical example leading toafin = 0.005. Lower
panel: Comparison between the BKL prediction (symbols) and the 2D
fit (solid, dashed and long-dashed lines) near the EMRL. Different curves
refer to different values ofν and the match is complete forν = 0.
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Figure 4.21: Critical values of the initial spin and mass ratio leading toa final BH hav-
ing the same spin as the initial onesi.e., afin(a, ν) = a. A magnification is
shown in the inset, where the dashed/non-dashed region refers to binaries
spun-down/upby the merger.

whereν is the symmetric mass ratioν ≡ M1M2/(M1 + M2)
2. Although obtained

independently in [1] and [8], expressions (4.58) and (4.65) are compatible as can be seen
by considering (4.65) for equal-mass binaries (ν = 1/4) and verifying that the following
relations hold within the computed error-bars

p0 =

√
3

2
+
t2
16

+
t3
64
, p1 =

1

2
+
s5
32

+
t0
8
, p2 =

s4
16
. (4.66)

As long as the initial spins are aligned (or antialigned) with the orbital angular momen-
tum, expression (4.65) can be extended tounequal-spin, unequal-massbinaries through
the substitution

a → ã ≡ a1 + a2q
2

1 + q2
. (4.67)

To obtain this result, it is sufficient to consider (4.58) and (4.65) as polynomial expressions
of the generic quantity

ã ≡ atot
(1 + q)2

1 + q2
. (4.68)

whereatot ≡ (a1 + a2q
2)/(1 + q)2 is the total dimensionless spin for generic aligned

binaries. In this way, expressions (4.58) and (4.65) are naturally compatible, sincẽa =
(a1 +a2)/2 for equal-mass unequal-spin binaries, andã = a for unequal-mass equal-spin
binaries. Furthermore, the extreme mass-ratio limit (EMRL) of expression (4.65) with the
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substitution (4.67) yields the expected result:afin(a1, a2, ν = 0) = a1.

As already commented above, the predictions of expressions(4.65) and (4.67) cover 3
of the 7 dimensions of the space of parameters; we next show how to to cover the remain-
ing 4 dimensions and derive an analytic expression for the magnitude of the dimensionless
spin vector|afin| of the BH produced by the coalescence of two generic BHs in terms of
the mass ratioq and of the initial dimensionless spin vectorsa1,2. To make the problem
tractable analytically, 4 assumptions are needed. While some of these are very natural,
others can be relaxed if additional accuracy in the estimateof |afin| is necessary. Remov-
ing any of these assumptions inevitably complicates the picture, introducing additional
dimensions, such as the initial separation in the binary or the radiated mass, in the space
of parameters.

As a result, in the simplest description the required assumptions are as follows:

(i) The mass radiated to gravitational wavesMrad can be neglected i.e.,Mfin = M ≡
M1 +M2. We note thatMrad/M = 1−Mfin/M ≈ 5−7×10−2 for most of the binaries
evolved numerically. The same assumption was applied in theanalyses of [1, 8], as well
as in [4]. Relaxing this assumption would introduce a dependence onMfin which can only
be measured through a numerical simulation.

(ii) At a sufficiently large but finite initial separation thefinal spin vectorSfin can be
well approximated as the sum of the two initial spin vectors and of a third vector̃ℓ

Sfin = S1 + S2 + ℓ̃ , (4.69)

Differently from refs. [151] and [4], where a definition similar to (4.69) was also intro-
duced, here we will constraiñℓ by exploiting the results of numerical-relativity calcula-
tions rather than by relating it to the orbital angular momentum of a test particle at the
innermost stable circular orbit (ISCO). When viewed as expressing the conservation of
the total angular momentum, eq. (4.69) also defines the vector̃ℓ as the difference between
the orbital angular momentum when the binary is widely separatedL, and the angular
momentum radiated until the mergerJrad, i.e., ℓ̃ = L − Jrad.

(iii) The vectorℓ̃ is parallel toL. This assumption is correct whenS1 = −S2 and
q = 1 [this can be seen from the post-Newtonian (PN) equations at 2.5 order], or by
equatorial symmetry when the spins are aligned withL or whenS1 = S2 = 0 (also
these cases can be seen from the PN equations). For more general configurations one
expects that̃ℓ will also have a component orthogonal toL as a result, for instance, of
spin-orbit or spin-spin couplings, which will produce in general a precession of̃ℓ. In
practice, the component of̃ℓ orthogonal toL will correspond to the angular momentum
J⊥

rad radiated in a plane orthogonal toL, with a resulting error in the estimate of|ℓ̃| which
is∼ |J⊥

rad|2/|ℓ̃|2 ∼ |J⊥
rad|2/(2

√
3M1M2)

2. MeasuringJ⊥
rad via numerical-relativity sim-

ulations, or estimating it via high-order PN equations, is an obvious way to improve our
approach. A similar assumption was also made in ref. [4]. It is astrophysically reasonable,
, however, given that spins should tend to align during earlyinspiral [201–203].

(iv) When the initial spin vectors are equal and opposite (S1 = −S2) and the masses
are equal (q = 1), the spin of the final BH is the same as for the nonspinning binaries.
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Stated differently, equal-mass binaries with equal and opposite-spins behave as nonspin-
ning binaries, at least when it comes down to the properties of the final black hole. While
this result cannot be derived from first principles, it reflects the expectation that if the
spins are the same and opposite, their contributions to the final spin cancel exactly for
equal-mass binaries. Besides being physically reasonable, this expectation is met by all
of the simulations performed to date, both for spins alignedwith L [1, 8] and orthogonal
to L [153]. In addition, this expectation is met by the easily leading-order contribu-
tions to the spin-orbit and spin-spin point-particle Hamiltonians and spin-induced radia-
tion flux [152,204]. A similar assumption is also made, although not explicitly, in ref. [4]
which, forStot = 0, predictsι = 0 and|afin| = Lorb(ι = 0, |afin|)/M = const. [cf. eqs.
(12)–(13) in ref. [4]].

Using these assumptions we can now derive the analytic expression for the final spin.
We start by expressing the vector relation (4.69) as

afin =
1

(1 + q)2
(
a1 + a2q

2 + ℓq
)
, (4.70)

whereafin = Sfin/M
2 [cf. assumption(i)], ℓ ≡ ℓ̃/(M1M2), a1,2 ≡ S1,2/M

2
1,2, and its

norm is then given by

|afin| =
1

(1 + q)2

[
|a1|2 + |a2|2q4 + 2|a2||a1|q2 cosα+

2
(
|a1| cos β + |a2|q2 cos γ

)
|ℓ|q + |ℓ|2q2

]1/2
, (4.71)

where the three (cosine) anglesα, β andγ are defined by

cosα ≡ â1 · â2 , cos β ≡ â1 · ℓ̂ , cos γ ≡ â2 · ℓ̂ . (4.72)

Becausea1,2 ‖ S1,2 and ℓ ‖ L [cf. assumption(iii) ], the anglesα, β andγ are also
those between the initial spin vectors and the initial orbital angular momentum, so that it
is possible to replacêa1,2 with Ŝ1,2 andℓ̂ with L̂ in (4.72). α, β andγ are well-defined if
the initial separation of the two BHs is sufficiently large [cf. assumption(ii) ] and that the
error introduced by assumption(iii) in the measure ofcosα, cos β andcos γ is also of the
order of|J⊥

rad|/|ℓ̃|.
The angleθfin between the final spin vector and the initial orbital angularmomentum

can be calculated from|afin|. Because of assumption(iii) , the component of the final spin
in the direction ofL is [cf. eq. (4.70)]

a
‖
fin ≡ afin · ℓ̂ =

|a1| cos β + |a2|q2 cos γ + |ℓ|q
(1 + q)2

, (4.73)

so thatcos θfin = a
‖
fin/|afin|, and the component orthogonal to the initial orbital angular

momentum isa⊥fin = |afin| sin θfin.

In essence, therefore, our approach consists of considering the dimensionless spin
vector of the final BH as the sum of the two initial spins and of athird vector parallel
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to the initial orbital angular momentum when the binaries are widely separated. Implicit
in the assumptions made, and in the logic of mapping an initial-state of the binary into
a final one, is the expectation that the length of this vector is an intrinsic “property” of
the binary, depending on the initial spin vectors and mass ratio, but not on the initial
separation. This is a consequence of assumption(ii) : because the vector̃ℓ measures the
orbital angular momentum that cannot be radiated, it can be thought of as the angular
momentum of the binary at the “effective” ISCO and, as such, it cannot be dependent on
the initial separation.

A consequence of our assumptions is thatafin for a BH-binary is already fully deter-
mined by the set of coefficientss4, s5, t0, t2, t3 computed to derive expression (4.65). The
latter, in fact, is simply the final spin for a special set of values for the cosine angles; since
the fitting coefficients are constant, they must hold also forgeneric binaries.

In view of this, all that is needed is to measure|ℓ| in terms of the fitting coefficients
computed in refs. [1,8]. This can be done by matching expression (4.73) with (4.65) [with
the condition (4.67)] for parallel and aligned spins (α = β = γ = 0), for parallel and
antialigned spins (α = 0, β = γ = π), and for antiparallel spins which are aligned or
antialigned (α = β = π, γ = 0 or α = γ = π, β = 0). This matching is not unique,
but the degeneracy can be broken by exploiting assumption(iv) and by requiring that|ℓ|
depends linearly oncosα, cosβ andcos γ. We therefore obtain

|ℓ| =
s4

(1 + q2)2
(
|a1|2 + |a2|2q4 + 2|a1||a2|q2 cosα

)
+

(
s5ν + t0 + 2

1 + q2

)(
|a1| cos β + |a2|q2 cos γ

)
+

2
√

3 + t2ν + t3ν
2 . (4.74)

We now consider some limits of expressions (4.71) and (4.74). First of all, when
q → 0, (4.71) and (4.74) yield the correct EMRL,i.e., |afin| = |a1|. Secondly, for
equal-mass binaries having spins that are equal and antiparallel, (4.71) and (4.74) reduce
to

|afin| =
|ℓ|
4

=

√
3

2
+
t2
16

+
t3
64

= p0 ≃ 0.688 . (4.75)

This result allows us to qualify more precisely a comment made before: because
for equal-mass BHs which are either nonspinning or have equal and opposite spins, the
vector|ℓ| does not depend on the initial spins, expression (4.75) states that|ℓ|M2

fin/4 =
|ℓ|M2/4 = |ℓ|M1M2 is, for such systems, the orbital angular momentum at the effective
ISCO. We can take this a step further and conjecture that|ℓ|M1M2 = |ℓ̃| is the series
expansion of the dimensionless orbital angular momentum atthe ISCO also forunequal-
massbinaries which are either nonspinning or with equal and opposite spins. The zeroth-
order term of this series (namely, the term2

√
3M1M2) is exactly the one predicted from

the EMRL.

Finally, we consider the case of equal, parallel and aligned/antialigned spins (|a2| =
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Figure 4.22:Left panel: Rescaled residual for aligned binaries. The circles refer to
equal-mass, equal-spin binaries presented in refs. [1–3, 6–8], triangles to
equal-mass, unequal-spin binaries presented in ref. [1, 6], and squares to
unequal-mass, equal-spin binaries presented in refs. [3, 6–8]. Here and in
the right panel the “binary order number” is just a dummy index labelling
the different configurations.Right panel: The top part reports the final
spin computed for misaligned binaries. Hexagons refer to data from [9]
(labelled “RIT”), squares to the data Table4.7(labelled “AEI”), circles to
data from [10] (labelled “FAU”), and triangles to data from [11] (labelled
“PSU-UTA”). Note that these latter data points refer to the aligned com-
ponenta‖fin since this is the only component available from ref. [11]. The
bottom part of this panel shows instead the rescaled residuals for these
misaligned binaries.
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ax1 ay1 az1 ax2 ay2 az2 ν |afin| θfin(◦)

0.151 0.000 -0.563 0.000 0.000 0.583 0.250 0.692 2.29
0.151 0.000 0.564 0.000 0.151 0.564 0.250 0.846 3.97
0.413 0.000 0.413 0.000 0.413 0.413 0.250 0.815 7.86

Table 4.7: Initial parameters of the new misaligned AEI binaries.

|a1|, α = 0, β = γ = 0, π), for which expressions (4.73) and (4.74) become

afin = |a1| cos β [1 + ν(s4|a1| cos β + t0 + s5ν)] +

ν(2
√

3 + t2ν + t3ν
2) , (4.76)

wherecosβ = ±1 for aligned/antialigned spins. As expected, expression (4.76) coincides
with (4.65) when |a1| cos β = a and with (4.58) [through the coefficients (4.66)] when
q = 1 and 2|a1| cos β = a1 + a2. Similarly, (4.73) and (4.74) reduce to (4.65) for
equal, antiparallel and aligned/antialigned spins (|a2| = |a1|, α = 0, β = 0, γ = π, or
β = π, γ = 0).

The only way to assess the validity of expressions (4.71) and (4.74) is to compare their
predictions with the numerical-relativity data. This is done in Figs.4.22and4.23, which
collect all of the published data, together with the three additional binaries computed with
theCCATIE code [87] and reported in Table4.7. In these plots, the “binary order number”
is just a dummy index labelling the different configurations. The left panel of Fig.4.22,
in particular, shows the rescaled residual,i.e., (|afin|fit − |afin|num.) × 100, for aligned
binaries. The plot shows the numerical-relativity data with circles referring to equal-mass,
equal-spin binaries from refs. [1–3, 6–8], triangles to equal-mass, unequal-spin binaries
from refs. [1, 6], and squares to unequal-mass, equal-spin binaries from refs. [3, 6–8].
Although the data is from simulations with different truncation errors, the residuals are all
very small and with a scatter of∼ 1%.

A more stringent test is shown in the right panel of Fig.4.22, which refers to mis-
aligned binaries. In the top part, hexagons indicate the numerical values for|afin| from
ref. [9], squares the ones in Table4.7, circles those from ref. [10] and triangles those from
ref. [11]; note that these latter data points refer to the aligned componenta‖fin since this
is the only component available from ref. [11]. The agreement is again very good, with
errors of a couple of percent (see bottom part of the same panel), even if the binaries are
generic and for some the initial and final spins differ by almost 180◦ [9].

Finally, Fig.4.23reports the angle between the final spin vector and the initial orbital
angular momentumθfin using the same data (and convention for the symbols) as in the
right panel of Fig.4.22. Measuring the final angle accurately is not trivial, particularly
due to the fact that the numerical evolutions start at a finiteseparation which does not
account for earlier evolution. The values reported in [9] (and the relative error-bars) are
shown with hexagons, while the squares refer to the binariesin Table4.7, and have been
computed using a new approach for the calculation of the Ricci scalar on the AH [205].
Shown with asterisks and circles are instead the values predicted for the data from [10,11]
by our analytic fit (asterisks) and by the point-particle approach suggested in ref. [4]
(circles).
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Figure 4.23:Using the same data (and convention for the symbols) as in theright panel
of Fig. 4.22, we here report the angle between the final spin vector and the
initial orbital angular momentumθfin. Shown instead with asterisks and
circles are the values predicted for the data from refs [10, 11] by our ana-
lytic fit (asterisks) and by the point-particle approach suggested in ref. [4]
(circles).

Clearly, when a comparison with numerical data is possible,the estimates of the fit
are in reasonable agreement and with the smallest residuals. However, for two of the three
binaries from [9] the estimates are slightly outside the error-bars. Note that the reported
angles are relative to the orbital plane at a small initial binary-separation, and thus are
likely to be underestimates as they do not take into account the evolution from asymptotic
distances; work is in progress to clarify this. When the comparison with the numerical
data is not possible becauseθfin is not reported (as for the data in ref. [11]), our approach
and the one in ref. [4] yield very similar estimates.

4.3.3 Discussion

We have considered the spin vector of the BH produced by a BH binary merger as the
sum of the two initial spins and of a third vector, parallel tothe initial orbital angular
momentum, whose norm depends only on the initial spin vectors and mass ratio, and
measures the orbital angular momentum not radiated. Without other fits than those already
available to model aligned/antialigned binaries, we have measured the unknown vector
and derived a formula that accounts therefore for all of the 7parameters describing a BH
binary inspiralling in quasi-circular orbits. The equations (4.71) and (4.74), encapsulate
the near-zone physics to provide a convenient, as well as robust and accurate prediction
over a wide range of parameters, determination of the mergerproduct of rather generic
BH binaries.

Testing the formula against all of the available numerical data from recent publications
and from our own simulations has revealed differences between the predicted and the
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simulated values of a few percent at most. This approach is intrinsically approximate and
it has been validated on a small set of configurations. It can be improved: by reducing the
χ2 of the fitting coefficients as new simulations are carried out; by using fitting functions
that are of higher-order than those in expressions (4.58) and (4.65); by estimatingJ⊥

rad

through PN expressions or by measuring it via numerical simulations.

Overall, the data sample computed numerically consists of 38 values for|vkick| and
for afin which, for simplicity, we have considered to have constant error-bars of8 km/s
and0.01, which represent, respectively, the largest errors reported in [87]. In both cases
we have modelled the data with generic quadratic functions in a1 anda2 so that, in the
case of the recoil velocity, the fitting function is

|vkick| = |c0 + c1a1 + c2a
2
1 + d0a1a2 + d1a2 + d2a

2
2| . (4.77)

The fitting function on the right-hand-side of (6.1) is smooth everywhere but that its abso-
lute value is not smooth along the diagonala1 = a2. Using (6.1) and a blind least-square
fit of the data, we obtained the coefficients (inkm/s)

c0 = 0.67 ± 1.12 , d0 = −18.56 ± 5.34 ,

c1 = −212.85 ± 2.96 , d1 = 213.69 ± 3.57 ,

c2 = 50.85 ± 3.48 , d2 = −40.99 ± 4.25 , (4.78)

with a reduced-χ2 = 0.09. Clearly, the errors in the coefficients can be extremely large
and this is simply the result of small-number statistics. However, the fit can be improved
by exploiting some knowledge about the physics of the process to simplify the fitting
expressions. In particular, we can use the constraint that no recoil velocity should be
produced for binaries having the same spin,i.e., that |vkick| = 0 for a1 = a2, or the
symmetry condition across the linea1 = a2. Enforcing both constraints yields

c0 = 0 , c1 = −d1 , c2 = −d2 , d0 = 0 , (4.79)

thus reducing the fitting function (6.1) to the simpler expression

|vkick| = |c1(a1 − a2) + c2(a
2
1 − a 2

2 )| . (4.80)

Performing a least-square fit using (6.3) we then obtain

c1 = −220.97 ± 0.78 , c2 = 45.52 ± 2.99 , (4.81)

with a comparable reduced-χ2 = 0.14, but with error-bars that are much smaller on
average. Because of this, we consider expression (6.3) as the best description of the data
at second-order in the spin parameters. Using (6.3) and (6.4), we have built the contour
plots shown in Fig.4.24.

A few remarks are worth making. Firstly, we recall that post-Newtonian calcula-
tions have so far derived only the linear contribution in thespin to the recoil velocity
(see [148] and references therein). However, the size of thequadratic coefficient (6.4)
is not small when compared to the linear one and it can lead to rather sizeable correc-
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Figure 4.24: Contour plots of|vkick| as a function of the spin parametersa1 anda2.
The diagram has been computed using expressions (6.3) and (6.4).

tions. These are maximized whena1 = 0 anda2 = ±1, or whena1 = ±1 anda2 = 0,
and can be as large as∼ 20%; while these corrections are smaller than those induced by
asymmetries in the mass, they are instructive in pointing out the relative importance of
spin-spin and spin-orbit effects during the merger and can be used as a guide in further re-
finements of the post-Newtonian treatments. Secondly, expression (6.3) clearly suggests
that the maximum recoil velocity should be found when the asymmetry is the largest
and the spins are antiparallel,i.e., a1 = −a2. Thirdly, whena2 = const., expression
(6.3) confirms the quadratic scaling proposed in [87] with a smaller data set [cf., eq. (42)
there]. Fourthly, fora1 = −a2, expression (6.3) is only linear and reproduces the scal-
ing suggested by [157]. Finally, using (6.3) the maximum recoil velocity is found to be
|vkick| = 441.94 ± 1.56 km/s, in very good agreement with the results of [157] and [87].

In the same way we have first fitted the data forafin, with a function

afin = p0 + p1a1 + p2a
2
1 + q0a1a2 + q1a2 + q2a

2
2 , (4.82)

and found coefficients with very large error-bars. As a result, also forafin we resort to
physical considerations to constrain the coefficientsp0 . . . q2. More specifically, at least
at lowest order, binaries with equal and opposite spins willnot contribute to the final spin
and thus behave essentially as nonspinning binaries. Stated differently, we assume that
afin = p0 for binaries witha1 = −a2. In addition, enforcing the symmetry condition
across the linea1 = a2 we obtain

p1 = q1 , p2 = q2 = q0/2 , (4.83)
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Figure 4.25: Contour plots ofafin as a function of the spin parametersa1 anda2. The
diagram has been computed using expressions (6.7) and (6.8).

so that the fitting function (6.5) effectively reduces to

afin = p0 + p1(a1 + a2) + p2(a1 + a2)
2 . (4.84)

Performing a least-square fit using (6.7) we then obtain

p0 = 0.6883 ± 0.0003 , p1 = 0.1530 ± 0.0004 ,

p2 = −0.0088 ± 0.0005 , (4.85)

with a reduced-χ2 = 0.02.

It should be noted that the coefficient of the quadratic term in (6.8) is much smaller
then the linear one and with much larger error-bars. Given the small statistics it is hard
to assess whether a quadratic dependence is necessary or if alinear one is the correct one
(however, see also the comment below on a possible interpretation of expression (6.7)).
In view of this, we have repeated the least-square fit of the data enforcing the condi-
tions (6.6) together withp2 = 0 (i.e., adopting a linear fitting function) and obtained
p0 = 0.6855 ± 0.0007 andp1 = 0.1518 ± 0.0012, with a worse reduced-χ2 = 0.16.
Because the coefficients of the lowest-order terms are so similar, both the linear and the
quadratic fits are well within the error-bars of the numerical simulations. Nevertheless,
since a quadratic scaling yields smaller residuals, we consider it to be the best represen-
tation of the data and have therefore computed the contour plots in Fig.4.25using (6.7)
and (6.8).

Here too, a few remarks are worth making: Firstly, the fitted value for the coefficient
p0 agrees very well with the values reported by several groups [3,139] when studying the
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inspiral of unequal-mass nonspinning binaries. Secondly,expression (6.7) has maximum
values fora1 = a2, suggesting that the maximum and minimum spins areafin = 0.9591±
0.0022 andafin = 0.3471 ± 0.0224, respectively. Thirdly, the quadratic scaling forafin

substantially confirms the suggestions of [134] but provides more accurate coefficients.
Expression (6.8) lends itself to an interesting interpretation. Being effectively a power
series in terms of the initial spins of the two black holes, its zeroth-order term can be seen
as the orbital angular momentum not radiated in gravitational waves and which amounts,
at most, to∼ 70% of the final spin. The first-order term, on the other hand, can be seen as
the contribution to the final spin coming from the initial spins of the two black holes and
this contribution, together with the one coming from the spin-orbit coupling, amounts at
most to∼ 30% of the final spin. Finally, the second-order term, which is natural to expect
as nonzero in this view, can then be related to the spin-spin coupling, with a contribution
to the final spin which is of∼ 4% at most.

The monotonic behaviour expressed by (6.8) does not show the presence of a local
maximum ofafin ≃ 0.87 for a1 = a2 ∼ 0.34 as suggested by [198] in the effective one-
body (EOB) approximation. Because the latter has been shownto be in good agreement
with numerical-relativity simulations of nonspinning black holes [5,206], additional sim-
ulations will be necessary to refute these results or to improve the EOB approximation for
spinning black holes.

Reported in the right part of Table4.2are also the fitted values forafin and|vkick| ob-
tained through the fitting functions (6.3) and (6.7), and the corresponding errors. The latter
are of few percent for most of the cases and increase up to∼ 20% only for those binaries
with very small kicks and which are intrinsically more difficult to calculate. As a con-
cluding remark we note that the fitting coefficients computedhere have been constructed
using overall moderate values of the initial spin; the only exception is the binaryu4 which
has the largest spin and which is nevertheless fitted with very small errors (cf. Table4.2).
In addition, since the submission of this work, another group has reported results from
equal-mass binaries with spins as high asa1 = a2 = ±0.9 [2]. Although also for these
very high-spin binaries the error in the predicted values isof 1% at most, a larger sample
of high-spin binaries is necessary to validate that the fitting expressions (6.3) and (6.7) are
robust also at very large spins.

We further performed simulations with an unequal masses andaligned spins (see Ta-
ble4.6) and obtained a third order polynomial fit for|afin| from arbitrary symmetric mass
ratioν ≡M1M2/(M1 +M2)

2 and the aligned equal spins of the initial BHsa ≡ J/M2,
i.e.,afin ≡ Jfin/M

2
fin = afin(a, ν)

afin = s0 + s1a+ s2a
2 + s3a

3 + s4a
2ν + s5aν

2 +

t0aν + t1ν + t2ν
2 + t3ν

3 . (4.86)

as shown in figure4.17. Determining the remaining five coefficients from a least-square
fit of the available data yielded

s4 = −0.129 ± 0.012 , s5 = −0.384 ± 0.261 ,

t0 = −2.686 ± 0.065 , t2 = −3.454 ± 0.132 ,

t3 = 2.353 ± 0.548 , (4.87)
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we then ran simulations for misaligned spins (see table4.7) and obtained a fit for arbitrary
initial spins and mass ratioq ≡M1/M2

|afin| =
1

(1 + q)2

[
|a1|2 + |a2|2q4 + 2|a2||a1|q2 cosα+

2
(
|a1| cos β + |a2|q2 cos γ

)
|ℓ|q + |ℓ|2q2

]1/2
, (4.88)

where

|ℓ| =
s4

(1 + q2)2
(
|a1|2 + |a2|2q4 + 2|a1||a2|q2 cosα

)
+

(
s5ν + t0 + 2

1 + q2

)(
|a1| cos β + |a2|q2 cos γ

)
+

2
√

3 + t2ν + t3ν
2 . (4.89)

These formulae give fairly accurate predictions for the final spin and kick of a merged
black hole and will be useful for studies of the evolution of supermassive black holes and
on statistical studies on the dynamics of compact objects indense stellar systems, as well
as significant effect on the waveform and impact on parameterestimation for gravitational
wave detectors.



Chapter 5

Gravitational Wave Detector Data
Analysis

Binary black-hole systems with spins aligned or anti-aligned to the orbital angular mo-
mentum, and which therefore do not exhibit precession effects, provide the natural ground
to start detailed studies of the influence of strong-field spin effects on gravitational wave
observations of coalescing binaries. Furthermore, such systems may be the preferred end-
state of the inspiral of generic supermassive binary black-hole systems [201–203]. In
view of this, we have computed the inspiral and merger of a large set of binary systems
of equal-mass black holes with spins parallel to the orbitalangular momentum but other-
wise arbitrary (see Table4.2). Attention is particularly focused on the gravitational-wave
emission so as to quantify how much spin effects contribute to the signal-to-noise ratio
(SNR), to the horizon distances, and to the relative event rates for representative ranges
in masses and detectors, as well as for the formulation of a generic phenomenological
waveform for aligned spin binary black hole inspiral configurations for detector pipeline
templates. As expected, the SNR increases with the projection of the total black hole spin
in the direction of the orbital momentum. We find that equal-spin binaries with maximum
spin aligned with the orbital angular momentum are more than“three times as loud” as
the corresponding binaries with anti-aligned spins, thus corresponding to event rates up to
27 times larger. We also consider the waveform mismatch between the different spinning
configurations and find that, within our numerical accuracy,binaries with opposite spins
S1 = −S2 cannot be distinguished whereas binaries with spinS1 = S2 have clearly dis-
tinct gravitational-wave emissions. We derive a simple expression for the energy radiated
in gravitational waves and find that the binaries always haveefficienciesErad/M & 3.6%,
which can become as large asErad/M ≃ 10% for maximally spinning binaries with spins
aligned with the orbital angular momentum.

Finally, in Section [5.2] I show the derivation of an analytical inspiral-merger-
ringdown gravitational waveforms from the black-hole binaries with non-precessing spins
presented in Table4.2. By matching a post-Newtonian description of the inspiral to a set
of numerical calculations performed in full general relativity, I obtain a waveform family
with a conveniently small number of physical parameters. These waveforms will allow
us to detect a larger parameter space of BH binary coalescence, to explore various sci-

157
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entific questions related to GW astronomy, and could dramatically improve the expected
detection rates of GW detectors as I will show in the next section.

The work presented in this chapter is presented in the papers[207,208] and was done
in collaboration with Ajith Parameshwaran, Christian Reisswig, Mark Hannam, Sascha
Husa, Yanbei Chen, Bernd Brügmann, Nils Dorband, Doreen Müller,Frank Ohme, Denis
Pollney, Lucia Santamaría, and Luciano Rezzolla.

5.1 Detectability

It has been a long-standing goal of the field of numerical relativity to provide results for
gravitational-wave data analysis in order to enhance the capabilities of current and fu-
ture gravitational wave detectors, especially regarding the observation of compact binary
coalescence. With a series of breakthroughs in 2005 [19, 20,132], this long-term goal
has become reality. However, further work is required to actually understand the prac-
tical implications of numerical solutions of the full Einstein equations for gravitational-
wave data analysis. Some early studies suggest that template banks that use numerical
information can increase the reach of detectors [14,15,209], aid the calibration of search
pipelines [210–212], and improve the estimation of parameters, such ase.g.,sky loca-
tion [213].

Here I present the use of gravitational waveforms from numerical-relativity (NR) cal-
culations for a number of sequences of equal-mass spinning black hole binaries whose
spins are aligned or anti-aligned with the orbital angular momentum as shown in Table
5.1, and consider the detectability of these binaries for the ground-based gravitational
wave-detectors as well as for the planned space-based LISA interferometer.

Interest in this type of binary stems from the fact that thereare strong physical in-
dications they represent preferred configurations in nature, at least if the black holes are
supermassive. It has been shown, in fact, that when the binary is surrounded by a massive
circumbinary disc, as the one expected by the merger of two galaxies, the dissipative dy-
namics of the matter produces a torque with the effect of aligning the spins to the orbital
angular momentum [203]. In addition, the merger of binarieswith aligned spins yields
recoil velocities which are sufficiently small (i.e.,. 450 km/s [11, 155, 157]) to prevent
the final black hole from being expelled from the host galaxy.This would then be com-
patible with the overwhelming astronomical evidence that massive black holes reside at
the centers of most galaxies.

The parameter space is therefore 2-dimensional (rather than 6 dimensional) parametrized
by the projectionsa1, a2 of the dimensionless spinsai ≡ Si/M

2
i of the individual black

holes on to direction of the angular momentum (chosen as thez-axis). As a result, spins
that are aligned with the orbital angular momentum are characterized by positive values
of a1, a2, while anti-aligned spins have negative values. Previous studies of this parame-
ter space [1,8,87,154,155,214], have considered the recoil velocity and final spin of the
merger remnant, and have constructed phenomenological formulas for these quantities
given the initial spinsa1 anda2 of the binary.

The focus of this Section is on the detectability of a given set of binaries in the pa-
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rameter sub-space of (anti-) aligned spins,i.e., for each of these binaries and across a set
of different masses we calculate the signal-to-noise ratio(SNR) for the LIGO [215,216],
enhanced LIGO (eLIGO) [217], advanced LIGO (AdLIGO) [14, 218], Virgo [219], ad-
vanced Virgo (AdVirgo) [220], and LISA [221,222] detectors.

In this way I attempt to address the following questions:

(i) Which among the aligned-spin configurations is the “loudest” and which one is
the “quietest”?

(ii) How large is the difference in signal-to-noise ratio between the loudest and the
quietest?

(iii) How do these considerations depend on the detector used, themass of the
binary, and the number of harmonics?

(iv) Are there configurations whose waveforms are difficult to distinguish and are
hence degenerate in the space of templates?

Overall, I find that equal-spinning, maximally anti-aligned binaries generally produce
the lowest SNR while equal-spinning, maximally aligned binaries (the orbital ’hang-up’
case) produce the highest SNR. For any mass, the SNR can be described with a low-
order polynomial of the initial spinsρ = ρ(a1, a2) and generally it increases with the
total dimensionless spin along the angular momentum direction, a ≡ 1

2(a1 + a2) · L̂.
The possibility of describing the whole behaviour of the waveforms from equal-mass,
aligned/antialigned binaries in terms of a single scalar quantity, namelya, provides a
certain amount of optimism that also more complex spin configurations can, ultimately,
be described in terms of only a few parameters.

I show the impact that higher-order contributions in the waveforms withℓ ≤ 4 have
on the maximum SNR and show that for low massesM ∈ [20, 100] they contribute,
say for the LIGO detector,≈ 2.5%, whereas for intermediate massesM > 100 M⊙

they contribute≈ 8%. I calculate the mismatch between the waveforms from different
binaries across our spin-diagram and find that binaries along the diagonala1 = −a2

(theu sequence) cannot be distinguished within our given numerical accuracy, whereas
configurations along the diagonala1 = a2 (thes sequence) are clearly different (cf.Fig5.7
and5.8, as well as Table5.4). Finally, I show the derivation of a simple expression for
the energy radiated in gravitational waves and find that thisis bounded between≃ 3.6%
and≃ 10% for maximally spinning binaries with spins anti-aligned oraligned with the
orbital angular momentum, respectively.

The plan of this section is as follows: in Section [5.1.1], I recall very briefly the
numerical set up and illustrate the properties of the initial data used in the simulations.
Section [5.1.2] is dedicated to the discussion of the gravitational-wave observables used
for the subsequent analysis, while Section [5.1.6] presents the results in terms of the SNR
and how this is influenced by higher-order modes. This Section also contains a discus-
sion of the match between the waveforms from different binaries and an assessment of
the accuracy of our results. Section [5.1.10], provides a brief discussion of the analytic
expressions we have found representing either the SNR or theenergy radiated in gravita-
tional waves. Finally, conclusions are summarized in Section [5.1.12].
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Table 5.1: Binary sequences for which numerical simulations have beencarried out, with various columns referring to the punctureinitial location
±x/M , the mass parametersmi/M , the dimensionless spinsai, and the normalized ADM mass̃M

ADM
≡ M

ADM
/M measured at

infinity. Finally, the last four columns contain the numerical values of the energy radiated during the simulation usingthe two methods
described in the text and the corresponding errors between them, as well as the error to the fitted values.

±x/M m1/M m2/M a1 a2 (px, py)1 = −(px, py)2 M̃
ADM

ENR
rad EQ

×,+

rad err. (%) fit err. (%)

r0 4.0000 0.3997 0.3998 −0.600 0.600 (0.002103,−0.112457) 0.9880 0.0366 0.0356 2.8 1.6
r2 4.0000 0.3997 0.4645 −0.300 0.600 (0.002024,−0.111106) 0.9878 0.0407 0.0394 3.3 0.6
r4 4.0000 0.3998 0.4825 0.000 0.600 (0.001958, 0.001958) 0.9876 0.0459 0.0445 3.1 1.9
r6 4.0000 0.3999 0.4645 0.300 0.600 (0.001901,−0.108648) 0.9876 0.0523 0.0504 3.8 2.2

s−8 5.0000 0.3000 0.3000 −0.800 −0.800 (0.001300,−0.101736) 0.9894 0.0240 0.0231 3.8 3.0
s0 4.0000 0.4824 0.4824 0.000 0.000 (0.002088,−0.112349) 0.9877 0.0360 0.0354 1.7 0.2
s2 4.0000 0.4746 0.4746 0.200 0.200 (0.001994,−0.110624) 0.9877 0.0421 0.0410 2.7 1.7
s4 4.0000 0.4494 0.4494 0.400 0.400 (0.001917,−0.109022) 0.9876 0.0499 0.0480 4.0 2.5
s6 4.0000 0.4000 0.4000 0.600 0.600 (0.001860,−0.107537) 0.9876 0.0609 0.0590 3.2 0.2
s8 4.0000 0.4000 0.4000 0.800 0.800 (0.001816,−0.106162) 0.9877 0.0740 0.0744 0.5 2.2

t0 4.0000 0.3995 0.3995 −0.600 −0.600 (−0.002595, 0.118379) 0.9886 0.0249 0.0243 2.5 1.1
t1 4.0000 0.3996 0.4641 −0.600 −0.300 (−0.002431, 0.116748) 0.9883 0.0271 0.0264 2.7 1.8
t2 4.0000 0.3997 0.4822 −0.600 0.000 (−0.002298, 0.115219) 0.9881 0.0295 0.0289 2.1 2.2
t3 4.0000 0.3998 0.4642 −0.600 0.300 (−0.002189, 0.113790) 0.9880 0.0326 0.0317 2.8 1.8

u2 4.0000 0.4745 0.4745 −0.200 0.200 ( 0.002090,−0.112361) 0.9878 0.0361 0.0354 2.0 0.2
u4 4.0000 0.4492 0.4494 −0.400 0.400 ( 0.002095,−0.112398) 0.9879 0.0363 0.0355 2.3 0.7
u8 4.0000 0.2999 0.2999 −0.800 0.800 ( 0.002114,−0.112539) 0.9883 0.0374 0.0363 3.0 3.7
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5.1.1 Numerical Setup and Initial Data

The numerical simulations have been carried out using theCCATIE code, a three-
dimensional finite-differencing code using theCactus Computational Toolkit [91] and
theCarpet [93] adaptive mesh-refinement driver. The code implements the “moving-
punctures” technique to represent dynamical black holes following [20, 59] (see Section
[2.4.4]).

In the results presented below we have used 9 levels of mesh refinement with a fine-
grid resolution of∆x/M = 0.02 and fourth-order finite differencing. The wave-zone
grid has a resolution of∆x/M = 0.128 and extends fromr = 24M to r = 180M , in
which our wave extraction is carried out. The outer (coarsest) grid extends to a spatial
position which is819.2M in each coordinate direction. Note that, because these are
higher resolution and longer numerical inspiral than the sequences presented in Table
4.2 we have much higher accuracy and more overlap with the post-Newtonian curves.
Because the black holes spins are all directed along thez-axis of our Cartesian grids, it
is possible to use a reflection symmetry condition across thez = 0 plane as described in
Section [2.6.5].

The initial data are constructed applying the “puncture” method [49, 51, 223, 224] as
described in Section [2.4.4]. We have considered four different sequences labelled as
“r”, “s,” “t” , and“u” along straight lines in the(a1, a2) parameter space, also referred
to as the “spin diagram”. As shown in Fig.5.1, these sequences cover the most important
portions of the space of parameters, which, is symmetric with respect to thea1 = a2

diagonal.

Similar sequences have also been considered in [1,8,87,154,155] but have here been
recalculated both using a higher resolution and with improved initial orbital parameters.
Post-Newtonian (PN) evolutions following the scheme outlined in [88], which provides a
straightforward prescription for initial-data parameters with small initial eccentricity, and
which can be interpreted as part of the process of matching our numerical calculations to
the inspiral described by the PN approximations were used. The free parameters to be
chosen for the puncture initial data are therefore: the puncture coordinate locationsCi,
the puncture bare mass parametersmi, the linear momentapi, and the individual spins
Si. The initial parameters for all of the binaries considered are collected in the left part
of Table5.1. The initial separations are fixed atD = 8M , whereM is the total initial
black hole mass, chosen asM = 1 (note that the initial ADM mass of the spacetime is not
exactly1 due to the binding energy of the black holes), while the individual asymptotic
initial black hole masses are thereforeMi = 1/2. The only exception is for the binary
s−8, for whichD = 10M , because the plunge happens too quickly to fit in a comparable
waveform for a comparable number of wave cycles.

5.1.2 NR waveforms

The analysis carried hereafter will be made in terms of gauge-invariant metric pertur-
bations on a Schwarzschild background, rather than via the Newman-Penrose curvature
scalarΨ4 (both methods are described in Section [2.6.3]. While the two prescriptions
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Figure 5.1: Schematic representation in the(a1, a2) plane, also referred to as the “spin
diagram”, of the initial data collected in Table5.1. These sequences cover
most important portions of the space of parameters which is symmetric with
respect to thea1 = a2 diagonal.
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yield estimates that are in very good agreement with each other and with differences be-
low 2%, we have found that the results obtained using gauge-invariant quantities have a
smaller numerical error, and are thus preferable.

More specifically, we compute the gravitational-wave amplitudesh+
ℓm and h×ℓm in

terms of the even and odd master functionsQ+
ℓm andQ×

ℓm via the relations [182]

hℓm(t) = h+
ℓm(t) − ih×ℓm(t) = Q+

ℓm(t) − i

∫ t

−∞
dt′Q×

ℓm(t′) , (5.1)

where the gauge-invariant perturbations are typically extracted at a radius ofr
E

= 160M
(see Section [5.1.9] for a discussion of the accuracy of our measurements).

As mentioned before, all our binaries [buts−8] have initial separations ofD = 8.0M
[D = 10.0M ], which, in the parameter space that we have considered, leads to a maxi-
mum initial frequency of the numerical waveforms, that isωini = 0.084/M . Depending
therefore on the massM , such an initial frequency can be greater than the lower cut-off
frequency of the detector for a given source at an arbitrary distance. Because for most
masses, a “real” waveform will be “longer” than the one computed here, we need to ac-
count for the missing frequency band between the lower cut-off and the initial frequency
of the wave. This can be accomplished by attaching to the NR wave the PN part of the
wave and will be discussed in the next Section.

The values of the initial frequencies and of the associated minimum massesMmin for
each of the detectors considered are reported in Table5.2.

5.1.3 Matching PN and NR waveform amplitudes

The existence of a cut-off mass set by the initial frequency of the NR simulations would
clearly restrict the validity of our considerations to large masses only. To counter this and
thus include also binaries with smaller masses, we account for the early inspiral phase by
describing it via PN approximations. To produce the PN waveforms, and the PN energy
that we are using directly in Section [5.1.11], we have used the spinning TaylorT1 approx-
imant used in Hannam et al. [225], and which is based on the PN expressions described
in [172, 226–232]. The choice of TaylorT1 is motivated by that fact, that in [225] it is
found to be more robust in the spinning case than the TaylorT4approximant, which was
previously found to yield excellent results in the nonspinning case [233] (see [233] for a
comparison of different techniques to obtain the gravitational-wave phase information for
quasi-circular inspiral). These waveforms are 3.5 PN accurate in the nonspinning phase,
and 2.5 PN accurate in the spin-dependent terms entering thephasing. The gravitational-
wave amplitudes, on the other hand, have been computed according to ref. [234] to the
highest PN order that is currently known for each of the spherical harmonic modes we
use.

A phase-coherent construction of hybrid PN-NR waveforms israther delicate, and has
not yet been achieved for the higher spherical harmonic modes we use here. However, for
the present purpose of computing the SNR and the radiated energies, such a construction
in the time domain is not necessary and all of the relevant work can be done more simply
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Table 5.2: Initial instantaneous frequenciesMωini and associated minimum masses
Mmin of the NR waveforms for the different models and for each detector
according to the corresponding lower cut-off frequency (i.e., at 30 Hz for
Virgo, at40 Hz for eLIGO, at10 Hz for AdLIGO/AdVirgo, and at10−4 Hz
for LISA). All the values for the masses are in units of solar masses.

Mωini Mmin Mmin Mmin Mmin

Virgo eLIGO AdLIGO/AdVirgo LISA

r0 0.080 86.2 64.6 258.5 2.58 × 107

r2 0.078 84.0 63.0 252.0 2.52 × 107

r4 0.077 82.9 62.2 248.8 2.49 × 107

r6 0.076 81.8 61.4 245.5 2.46 × 107

s−8 0.060 64.6 48.4 193.8 1.93 × 107

s0 0.080 86.2 64.6 258.5 2.58 × 107

s2 0.078 84.0 63.0 252.0 2.52 × 107

s4 0.076 81.8 61.4 245.5 2.46 × 107

s6 0.075 80.8 60.6 242.3 2.42 × 107

s8 0.073 78.6 59.0 235.8 2.36 × 107

t0 0.084 90.5 67.8 271.4 2.71 × 107

t1 0.083 89.4 67.0 268.2 2.68 × 107

t2 0.082 88.3 66.2 264.9 2.65 × 107

t3 0.081 87.2 65.4 261.7 2.62 × 107

u2 0.080 86.2 64.6 258.5 2.58 × 107

u4 0.080 86.2 64.6 258.5 2.58 × 107

u8 0.080 86.2 64.6 258.5 2.58 × 107
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Figure 5.2: Noise strain for the Advanced LIGO and Virgo detectors and the Fourier-
transformed amplitude of the PN and NR waveform atθ = 0, φ = 0 for
a total massM = 200M⊙ at a distanced = 100 Mpc for the maximally
spinning models8. The glueing frequency is atfglue = 27.14 Hz.

in the frequency domain. In practice, we Fourier transform the PN and NR waveforms
and “glue” them together at a suitable “glueing” frequencyωglue. Since the SNR depends
only on the amplitude of the waveform, [ eq. (5.5)], it is not necessary to match the PN-
waveform in the phase. This simplifies the process of waveform matching and basically
reduces to a simple check of the amplitude matching to address the error of the mismatch.
Without any parameter adjustment, the PN-waveform amplitudes match well with the
inspiral part of the NR-waveforms, and result in an error which is usually≈ 1.5% and in
the worst case≈ 4.0% for the binary configurationt0. It is important to pay attention in
the time-domain analysis in order to limit the noise artifacts in the Fourier-transformed
amplitudes, is the use of a windowing function (e.g.,a hyperbolic tangent) to smoothly
blend the waveform to zero before the initial burst of spurious radiation, as well as after
the ringdown, in order to limit spurious oscillations in theFourier-transformed waveform.
A representative example is shown in Fig.5.2, where the noise strain for the Virgo and
Advanced LIGO detectors is reported, together with the Fourier-transformed amplitude
of the PN and NR waveform for the maximally spinning models8. The waveform is
assumed to be observed atθ = 0, φ = 0 for a total massM = 200M⊙ and from a distance
d = 100Mpc. The glueing frequency in this case is atfglue = ωglue/(2π) = 27.14 Hz.

Since eachℓ,m mode of the gravitational-wave field will have a different initial fre-
quency, we need to make sure that they are all properly taken into account when deter-
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mining the glueing frequency, so that

ωglue ≥ max
ℓ,m

(ωini)ℓm . (5.2)

In practice, the initial frequency of our highest mode,ℓ = 4,m = 4, has an initial
frequency(ωini)44 = 2(ωini)22. As a result, we select the glueing frequency according to
the binary configuration with the largest initial frequency, the binaryt0, and takeωglue =
2(ωini)22 = 0.168/M . We also measure how sensitive this choice is, by considering
how the results are affected when choosing insteadωglue ± ∆ω, with ∆ω ≪ ωglue. For
∆ω = 0.01/M we find a maximal difference in the computed SNR of∼ 2.0% over
all configurations and all masses. Such a difference affectsequally the maximum and
averaged SNRs (see Section [5.1.5] for a discussion on these two different measures of
the SNR). A change of∆ω in ωglue affects only marginally the relative difference between
SNRs computed by including modes up toℓ = 2 andℓ = 4, and in this case the differences
are∼ 2.0%. Overall, the uncertainties introduced by the choice ofωglue are much smaller
than the typical error at which we report the SNRs.

5.1.4 Radiated Energy

Since the total energy must be conserved, we can use the radiated energy as an important
tool to verify the accuracy of the gravitational-wave amplitude and thus the overall pre-
cision of our calculations. More specifically, because it isstraightforward to determine
the initial and the final total mass, it is also straightforward to compare the difference in
the two with the radiated energy. In practice, we compute theinitial mass of the system
asMini = M̃

ADM
, while the final mass of the merger remnantMfin is deduced from the

properties of the apparent horizon within the isolated-horizon formalism as discussed in
Section [2.6.2]. The radiated energy is then given by the difference

ENR
rad = M

ADM
−Mfin , (5.3)

and should be equal to the energy that has been radiated through gravitational waves
during the simulation [182]

EQ
×,+

rad =
1

32π

∑

ℓ,m

∫ t

0
dt′

(∣∣∣∣
dQ+

ℓm

dt

∣∣∣∣
2

+
∣∣Q×

ℓm

∣∣2
)
. (5.4)

For all binaries the difference betweenErad andEQ
×,+

rad is between∼ 0.5% and∼ 4.0%
and a detailed comparison of the numerical values is reported in Table5.1. In Section
[5.1.11] I will discuss an analytic fit to the computed data that provides a measure of the
amount of mass radiated during the inspiral, merger and ringdown as a function of the
initial spins.
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5.1.5 SNR, Horizon Distances and Event Rates

Following ref. [235], we define the SNR,ρ, for matched-filtering searches as

ρ2 ≡
(
S

N

)2

matched

= 4

∫ ∞

0

|h̃(f)|2
Sh(f)

df (5.5)

whereh̃(f) is the Fourier transform of the time domain gravitational-wave signalh(t),
defined in the continuum as

h̃(f) =

∫ ∞

−∞
h(t)e−2πiftdt , (5.6)

andSh(f) is the noise power spectral density for a given detector. Hereafter we will con-
sider theSh(f) for the ground-based detectors LIGO, enhanced LIGO, advanced LIGO
and Virgo, as well as the space-bound LISA interferometer. The associated noise power
spectral densities are reported in AppendixA.8.

Since the SNR (5.5) depends on the angle from the source to the detector, it is useful
to introduce the angle-averaged SNR〈ρ2〉, which can be computed after decomposing the
gravitational-wave signal in terms of spherical harmonic modes. Using the orthonormality
of the spin-weighted spherical harmonic basissYℓm, the“angle-averaged”SNR

ρavg ≡ 〈ρ2〉 ≡ 1

π

∫
dΩ

∫
df

∣∣∣
∑

ℓm h̃ℓm(f)−2Yℓm(Ω)
∣∣∣
2

Sh(f)
, (5.7)

can be written as a sum of integrals of the absolute squares ofthe Fourier-transformed
modes̃hℓm(f)

ρavg =
1

π

∑

ℓm

∫
df

|h̃ℓm(f)|2
Sh(f)

. (5.8)

For each binary, distance and mass, we have calculated both the “maximum” SNRρmax

for an optimally oriented detector,i.e., the SNR for a detector oriented such that it mea-
sures only the+ polarization of the gravitational-wave signal, and the averaged SNR.
Here the mass is always meant to be theredshiftedtotal mass,(1 + z)Msource, wherez is
the redshift andMsource is the mass at the source. For sources at small distances,i.e., less
than100Mpc, thenz . 0.024 and henceM ≃Msource to within a few percent. Identical
results would have been obtained if we had considered the× polarization.

If the gravitational-wave signal is modeled through the dominant ℓ = 2 = m mode
only (or in our case via a superpositionℓ = 2 = ±m), the maximum SNR can be de-
duced from the average SNR after exploiting the properties of the spin-weighted spherical
harmonic−2Y22 and−2Y2−2, namely

ρmax =
√

5ρ2
avg(ℓ = 2,m = 2) (5.9)

=

√
5

2
ρ2
avg(ℓ = 2,m = ±2) , (5.10)
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but such a relation is no longer true when including modes with ℓ > 2. The relation
between the maximum and the averaged value of the SNR can onlybe determined numer-
ically.

When computing the SNR, a reference distance needs to be fixed. In this case, I set
the reference distance to bedρ = 100Mpc. The results of the SNR atdρ across the
spin diagram can then be recast in terms of an“horizon distance”, namely the distance at
which a given binary system with redshifted massM has an SNR equal to a threshold for
detectability and which we chose to beρ = 8, as customary for ground-based detectors.
The horizon distance is then simply defined as

dH = dρ

(
ρ(d = dρ)

8

)
Mpc . (5.11)

The quantitydH is equivalent to the SNR but has the advantage to provide, at least for
detectors not operating at large SNRs, a estimate of the increase in the relative event rate
R as

R ∼
(

dH
dH,a=−1

)3

, (5.12)

wheredH,a=−1 is the horizon distance of the configuration with lowest SNR,belonging
to the extrapolated casea = −1. Expression (5.12) is valid as an equality only for small
horizon distances, namely those for which the redshift is negligible. At large redshifts the
observed masses would differ considerably from the masses at the source. In other words,
at large redshifts the horizon distances would be differentnot only because of the spin, but
also because the masses at the sources would be intrinsically different. This impacts the
deduced event rate as defined in (5.12), which considers only the contributions coming
from the spin. Hence, for large redshifts the event rateR defined here serves only as
a lower limit for masses larger than the optimal one and as an upper bound for masses
smaller than the optimal.

As a concrete example, let us assume that we have calculated the horizon distance for
a binary witha = −1 which, as can be deduced from Fig.5.4, will lead to the smallest
SNR for a given detector. We also assume that this binary has amass which is smaller
than the optimal one. Let us now consider a binary with the same mass at the detector but
with a > −1; this binary will clearly lead to a larger SNR but because themasses at the
detector are the same, the mass of the binary witha > −1 will be (because of the redshift)
smaller at the source. As a result, its horizon distance willbe overestimated, and hence
the event rate coming from (5.12) only an upper bound. A similar argument for masses
larger than the optimal one would instead lead to the conclusion that the event rateR is
only a lower bound.

5.1.6 Results

The results of the analysis discussed above are summarized in Fig. 5.3, which shows
the averaged and maximum horizon distancedH = dH(a,M) for some of the detectors
considered. As mentioned above, the horizon distance has been computed at a reference
SNR ρ = 8.0, and is parametrized in terms of the total mass of the system (in solar
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Figure 5.3: Averaged and maximum horizon distancedH = dH(a,M) for the LIGO
detector (top left panel), for the Virgo detector (top rightpanel), and for
the advanced versions of both detectors (bottom left and right panels, re-
spectively). The horizon distance has been computed at a reference SNR
ρ = 8.0.
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Figure 5.4: Maximum SNRρmax = ρ(a, M) for the LIGO detector for a given set of
masses at a distanced = 100 Mpc. Note that the growth ofρmax with a
is very well described with a low-order polynomial which is of 4th order
for the optimal mass (cf. discussion in Sect.5.1.10). Note also that the
dependence ona becomes stronger for massesM > 200M⊙, for which
the NR-part of the waveform and hence the plunge and ringdownphase
dominate. In these cases, the SNR is more then doubled between a = −1
anda = +1.

masses) and of the average dimensionless spin “a” as projected along the orbital angular
momentumL

a ≡ 1

2
(a1 + a2) · L̂ =

1

2
(a1 + a2) · ez , (5.13)

whereL̂ ≡ L/|L|, and the orbital plane has been chosen to coincide with the(x, y)
plane of our Cartesian coordinate system. The top left panelof Fig. 5.3 refers to the
LIGO detector, the top right panel to the Virgo detector, while the lower left and right
panels refer to the advanced versions of both detectors, respectively.

These panels deserve some comments:

• The maximum SNR is always larger than the average one but the difference between
the two is not constant, changing both with the total dimensionless spina and with
the total massM .

• For any fixed value ofa, the horizon distance (and hence the SNR) grows steeply
to a maximum mass and then rapidly decreases to very small values of∼ O(1).

• For any value ofa, the maximum horizon distance/SNR also marks the “optimal
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Figure 5.5: Averaged and maximum SNRρ = ρ(a,M) for the planned LISA mission
and for sources atd = 6.4 Gpc (z = 1).

mass” for the binaryMopt, the mass of the binary whose inspiral and merger is op-
timally tuned with the given detector and hence can be seen from further away. The
differences between the maximum and average SNR are largestin the neighborhood
of the optimal mass.

• The configuration with spins parallel and aligned to the orbital angular momentum
are generically “louder” than those with spins parallel butantialigned with the or-
bital angular momentum, with the binaries havinga = ±1 being the “loudest” and
“quietest”, respectively.

• In the cases of the LIGO and advanced Virgo detectors the horizon distance is es-
sentially zero at cut-off masses which are∼ 900M⊙ and∼ 3000M⊙, respectively.

• For any fixed value of the total mass, the SNR grows witha and, as we will discuss
later on, this growth is very well described with a polynomial of 4th order. This
is shown more clearly in Fig.5.4, which reports the maximum SNRρmax for the
LIGO detector and for a given set of masses at a distanced = 100Mpc. The growth
of ρmax with a becomes steeper for massesM > 200M⊙, for which the NR-part of
the waveform and hence the plunge and ringdown phase dominates. In these cases,
the SNR is more then doubled betweena = −1 anda = +1.

• When going from the present LIGO/Virgo detectors to their advanced versions,
the average horizon distances go from∼ 600/800Mpc to ∼ 104/1.2 × 104 Mpc,
thus with an observationalvolumeof the Universe that is increased by a factor of
∼ 5000/3000, respectively.

Figure5.5shows similar information but for the planned LISA mission.Since the horizon
distance can exceed the whole Hubble horizon, the figure reports the averaged and maxi-
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mum SNRρ = ρ(a,M) for sources atd = 6.4Gpc (z = 1). Many of the considerations
made above hold also for the LISA detector, and for sufficiently high and aligned spins
(a & 0.8), the SNR is& O(10) with binaries having masses& few × 103 M⊙.

The most salient information of Figs.5.3 and 5.5 is collected in Table5.3 which
reports the properties of the “optimal” aligned binaries for the different detectors. More
specifically, the Table reports in its different rows the optimal total aligned spina, the
optimal total mass in solar masses, the optimal maximumρ and averageρavg SNRs, the
optimal horizon distancedH (expressed inMpc and withH−1 being the Hubble radius),
the optimal relative event rateR, and the glueing frequencyfglue for the optimal binary.
The masses have been sampled with an accuracy of2.5M⊙ for the ground-based detectors
and of2.5 × 104M⊙ for LISA.

Table 5.3: Properties of the “optimal” aligned binaries for the different detectors.
Shown in the different rows are the optimal total aligned spin a, the opti-
mal total mass in solar masses, the optimal maximumρmax and averageρavg

SNRs, the optimal horizon distancedH (expressed inMpc and wherecH−1

is the Hubble radius), the lower bound for the optimal relative event rateR,
and the glueing frequencyfglue for the optimal binary. The masses have been
sampled with an accuracy of2.5M⊙ for the ground-based detectors and of
2.5 × 104M⊙ for LISA.

LIGO eLIGO AdLIGO Virgo AdVirgo LISA
a 0.8 0.8 0.8 0.8 0.8 0.8
Mopt (M⊙) 197 180 290 395 390 5.35 × 106

ρmax 87 175 1667 118 1591 2.91 × 106

ρavg 52 104 991 70 944 1.77 × 106

dH (Mpc) 1091 2190 > cH−1 1476 > cH−1 > cH−1

R 18 17 16 16 17 26
fglue (Hz) 27.48 30.51 18.71 13.74 13.91 1.0 × 10−3

5.1.7 Influence of higherℓ-modes

It is important to at least consider the impact that higher-order modes have on the SNR
of equal-mass aligned binaries. Some representative examples of this impact is shown in
Fig. 5.6. The left panel of this figure, in particular shows the maximum SNRρmax as a
function of the mass for the highly spinning models8 and for the present detectors LIGO
and Virgo. Different lines refer to the SNRs computed using only the ℓ = 2 multipoles
(continuous line), or up to theℓ = 4 multipoles (dashed line). The contribution of the
higher modes is most important near the optimal mass (M ∼ 200M⊙ for LIGO and
M ∼ 400M⊙ for Virgo) but this is also non-negligible for larger masses, where it can
produce an increase of∼ 8% in SNR in a detector such as Virgo.

The right panel of Fig.5.6, shows the ratio between maximum and averaged SNR as
a function of the total projected spina for a binary ofM = 200M⊙ (5.35 × 106 M⊙)
and the LIGO (LISA) detector. As mentioned in Sect.5.1.5, this ratio is not expressed
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Figure 5.6: Left panel: maximum SNRρmax as a function of the mass for the highly
spinning models8 and for the present detectors LIGO and Virgo. Different
lines refer to the SNRs computed using only theℓ = 2 multipoles (contin-
uous line), or up to theℓ = 4 multipoles (dashed line).Right panel:ratio
between maximum and averaged SNRρ as a function of the spinsa1 = a2

for M = 200M⊙ (M = 3.53 × 106M⊙) by including modes up toℓ = 2
andℓ = 4 for LIGO (LISA). In contrast to the caseℓ = 2, theℓ = 4-curve
is not constant but depends on the initial spinsa1, a2
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by a simple algebraic expression [ Eq. (5.9)], but needs to be determined numerically.
Interestingly, this ratio is not constant but increases by∼ 10% for larger total projected
spins, underlining the importance of higher-order contributions as the initial spin increase.

5.1.8 Match between different models

An extremely useful quantity to analyze is the match betweenthe amplitudes of the wave-
forms from two different binaries. This will quantify the differences in the gravitational-
wave signal relative to some reference models. The match between two waveformsh1(t)
andh2(t) (or a template and a waveform) can be calculated via the weighted scalar prod-
uct in frequency space between two given waveforms

〈h1|h2〉 = 4ℜ
∫ ∞

0
df
h̃1(f)h̃∗2(f)

Sh(f)
, (5.14)

whereh̃1(f) is the power spectral density ofh1(t), the asterisk indicates a complex con-
jugate, andSh(f) is the noise power spectral density of a given detector. The overlap is
then given by the normalized scalar product

O[h1, h2] =
〈h1|h2〉√

〈h1|h1〉〈h2|h2〉
. (5.15)

Two parameters must be taken into account when computing theoverlap. The first is
the “time of arrival” tA corresponding to an offset in the Fourier-transform of the signal
exp [iω(t− tA)]. The second is the “initial phase”Φ of the orbital motion when it enters
the detector band.

For both of these parameters the overlap should be maximized. There are two possible
ways of doing this. The first approach involves thebestmatch, which gives an upper
bound by maximizing over both of the phases of each waveform

Mbest ≡ max
tA

max
Φ1

max
Φ2

{O[h1, h2]} . (5.16)

The second way involves theminimaxmatch, and is obtained by maximizing over the
phase of one waveform but minimizing over the phase of the other

Mminimax ≡ max
tA

min
Φ2

max
Φ1

{O[h1, h2]} , (5.17)

and thus represents a “worst-case” scenario since it gives lower matches although one is
maximizing over the template phase. More details on the maximization procedure can be
found in [236, 237]. Note that all the matches computed hereafter refer to the numerical-
relativity part of the waveform only.

A sensible method to evaluate expressions (5.16) and (5.17) uses the binarys0, the
nonspinning binary, as a reference and computes the overlapwith the binaries at repre-
sentative locations in the spin diagram, at the corners fors0 − s8, s0 − u8, s0 − s−8, or
along the main diagonal,s−8−s8. In this way we assess whether the waveform produced
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Figure 5.7: Best and minmax match as a function of mass for a waveform containing
only the ℓ = 2,m = 2 contribution and referring to the LIGO detector.
Very similar behaviors can be shown also for the other detectors.

by a nonspinning binary can be used to detect also spinning binaries and how much the
overlap is decreased in this case.

This is shown in Fig.5.7, which reports the best and minmax matches as a function
of mass for a waveform containing only theℓ = 2,m = 2 contribution for the LIGO
detector. Different lines show the match computed betweens0 and other representative
binaries. This shows the remarkable similarity between thewaveforms of binaries having
a zero total spin. This is shown by thes0 − u8 match, which is essentially very close to
1 for all the masses considered (Table5.4). This result extends to all the other measured
quantities, such as the radiated energy or angular momentum. The equivalence between
nonspinning binaries and binaries with equal and opposite spins has been exploited in the
derivation of expressions for the final spin presented in Chapter [4]. The results of Fig.5.7
and Table5.4 are therefore a simple example, although probably not the only possible
one, of a well defined region of the space of initial configurations which can be mapped
to an almost degenerate region (essentially to a single point) in the space of templates.
This represents a serious obstacle towards a proper estimate of physical parameters of the
binaries that may be removed, at least in part, only if the waveform is measured with a
sufficiently high SNR.

An equally interesting result, presented in Fig.5.7, is that the overlap is also very
high between the nonspinning binary and the binary with equal and antialigned spins,
s0 − s−8; also in this case the best match isMbest & 0.9 for the range of masses that is
relevant here. Slightly smaller and decreasing with increasing masses are the best matches
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Figure 5.8: Best match as a function of the total projected spina for a waveform con-
taining only theℓ = 2,m = 2 contribution. The top/lower panels refers to
binary with a total mass (200/400M⊙) which are close to the optimal ones
for the LIGO/Virgo or advanced detectors, respectively. Inboth panels the
dotted line shows the minimum best match (0.965) needed for a detection.
While the data have been computed for the LIGO detector, verysimilar
behaviors can be shown also for the other detectors.

computed when comparing the nonspinning binary with the binary of parallel and aligned
spins, so thatMbest ∼ 0.8, but only for very large masses. The waveforms appear clearly
different (withMbest . 0.6) only when comparing the binaries along the main diagonal
of the spin diagram, fors8 − s−8. Even in this rather extreme case the differences tend to
become smaller for smaller masses. Overall, this result underlines that even simple wave-
forms, such as those relative to nonspinning binaries, willbe effective enough to provide
a detection for most configurations of equal-mass and aligned/antialigned binaries.

A different way to assess “how different” the waveforms are across all of the equal-
mass aligned/antialigned spins configurations consideredhere is summarized in Fig.5.8,
which shows the best match as a function of the total projected spina for waveforms
containing only theℓ = 2,m = 2 contribution and referring to the LIGO detector. The
top panel, in particular, refers to binary with a total mass of 200M⊙ (close to the optimal
mass for the LIGO/Virgo detectors), while the bottom panel refers to a binary with mass
400M⊙ (close to the optimal mass for the advanced LIGO/Virgo detectors), as shown in
Table5.4. Besides the smooth behaviour ofMbest across all the values ofa considered,
it is clear that the waveform from a nonspinning binary can beextremely useful across the
wholespin diagram and yield very large overlaps even for binarieswith very high spins.
In both panels, in fact, the dotted line shows the minimum best match (Mbest = 0.965)
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needed for a detection [238]. This result is reassuring in light of the fact that most of
the searches in the detector data are made using phenomenological waveforms based on
nonspinning binaries. This result is exploited for the template development in Section
[5.2].

For completeness, the results presented in Fig.5.7(as well as those in Fig.5.9) are also
reported in Table5.4, where the columns showMbest andMminmax and for waveforms
computed either using only theℓ = 2,m = 2 contribution (third and fourth columns),
only theℓ = 3,m = 2 contribution (fifth and sixth columns), or all contributions up to
ℓ = 4 (last two columns). The matches among the high-order modes,e.g.,(s0)ℓ=3,m=2 −
(u8)ℓ=3,m=2, is higher than those of the lower ones and remains true even for higher
modes beyondℓ = 3,m = 2. This indicates that in order to do high-precision parameter
estimation by including higher modes it is also important that these modes are accurately
resolved, so that they can be clearly distinguished from oneanother.

We generally expect the match to degrade when the waveforms are computed by in-
cluding higher-order modes (up toℓ = 4) and that this degradation will become larger
with increasing inclinationθ. The most notable example is for the degeneracy along the
diagonala1 = −a2, which should be broken by the inclusion of higher-order modes. For
this reason we have computed the sky-averaged match of waveforms including modes up
to ℓ = 4 (i.e., the “complete” waveforms) and the corresponding matches are reported
in the last two columns of Table5.4. We measure a marked decreased in the minmax
match, but a much smaller decrease in the best match. Although our resolution should be
marginally enough for us to detect such a difference in the best match, we also believe
that a much higher accuracy is required to determine this with certainty. The matches with
complete waveforms along other directions,e.g.,s0 − s8 or s0− s−8, do not decrease and
this is due to the very large mismatch we already have with theℓ = 2 = m waveforms.

Figs5.7and5.8show data computed for the LIGO detector only, however, verysim-
ilar behaviors can be shown also for the other detectors.

5.1.9 Accuracy of NR waveform amplitudes

A reasonable concern that can be raised when looking the veryhigh matches between the
waveforms in theu-sequence is that these are the result of insufficient resolution. In other
words, the waveforms may appear similar simply because our resolution is not sufficient
to pick-up the differences. To address this concern we have computed the overlap among
the waveforms obtained at three different resolutions and for a representative binary with
nonzero spins,r0. Clearly, a low match in this case would be an indication thatour results
are very sensitive to the numerical resolution.

The results of this validation are presented in Fig.5.9 and are reported in the last
eight rows of Table5.4. Shown with different lines in Fig.5.9 are the matches obtained
when comparing the numerical waveforms of the binaryr0 computed at low resolution
(∆x/M = 0.024) and medium resolution (∆x/M = 0.020, as well as at a medium
and high resolution (∆x/M = 0.018). The matches are computed considering only the
ℓ = 2,m = 2 mode and for the LIGO detector, but very similar behaviors can be shown
also for higher modes or for the other detectors.
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Table 5.4: Best and minmax matches as computed for the LIGO detector forbinaries with different spins in the spin diagram. Different columns
showMbest andMminmax for waveforms computed either using only theℓ = 2,m = 2 contribution (third and fourth columns),
only theℓ = 3,m = 2 contribution (fifth and sixth columns), or the sky-averagedcontributions of all modes up toℓ = 4 (last two
columns). Finally the last eight rows show the matches at different resolutions (i.e.,∆x/M = 0.024, 0.020, 0.018 or low, medium and
high, respectively) for the binaryr0.

M/M⊙ Mbest Mminmax Mbest Mminmax Mbest Mminmax

ℓ = 2,m = 2 ℓ = 2,m = 2 ℓ = 3,m = 2 ℓ = 3,m = 2 up toℓ = 4 up toℓ = 4

s0 − s8 100 0.87182 0.86914 0.87802 0.85061 0.86337 0.83272
200 0.79987 0.79642 0.82533 0.80236 0.80070 0.75679
300 0.74394 0.74026 0.82570 0.78819 0.74785 0.71139
400 0.71981 0.71568 0.84074 0.81285 0.72345 0.69019

s0 − u8 100 0.99926 0.99914 0.99497 0.97411 0.99673 0.95443
200 0.99928 0.99906 0.99372 0.95193 0.99483 0.95919
300 0.99923 0.99870 0.99189 0.93888 0.99251 0.96105
400 0.99919 0.99822 0.99147 0.93493 0.99110 0.96054

s0 − s−8 100 0.93942 0.93907 0.95717 0.94843 0.93695 0.92143
200 0.90746 0.90536 0.95647 0.94521 0.89646 0.88041
300 0.89491 0.89197 0.95015 0.93814 0.87303 0.84960
400 0.89369 0.89065 0.94806 0.93550 0.85492 0.82103

s−8 − s8 100 0.78948 0.78493 0.87041 0.85222 0.78310 0.74895
200 0.63309 0.62703 0.90722 0.88543 0.63456 0.59426
300 0.56934 0.56008 0.90322 0.88869 0.56941 0.52170
400 0.54235 0.53960 0.91199 0.89848 0.55470 0.49338

s−8 − u8 100 0.94250 0.94187 0.96299 0.94669 0.93897 0.89017
200 0.91444 0.91229 0.96316 0.93068 0.90315 0.85958
300 0.90188 0.89885 0.95486 0.91256 0.87846 0.83428
400 0.89772 0.89492 0.95132 0.90583 0.85870 0.80907

s8 − u8 100 0.87127 0.86817 0.87656 0.84229 0.85866 0.80969
200 0.79750 0.79477 0.83582 0.81476 0.79074 0.73526
300 0.74063 0.73884 0.83897 0.80378 0.73616 0.68774
400 0.71798 0.71343 0.84955 0.81925 0.71203 0.66611

r0 100 0.99979 0.99970 0.99495 0.98812 0.99855 0.99463
(0.024, 0.020) 200 0.99963 0.99929 0.99133 0.97100 0.99633 0.98800

300 0.99943 0.99894 0.98752 0.95775 0.99379 0.98152
400 0.99924 0.99868 0.98630 0.95317 0.99209 0.97683

r0 100 0.99990 0.99989 0.99873 0.99299 0.99881 0.99639
(0.020, 0.018) 200 0.99980 0.99970 0.99806 0.98074 0.99705 0.98952

300 0.99956 0.99924 0.99707 0.97238 0.99497 0.98070
400 0.99935 0.99866 0.99666 0.97017 0.99320 0.97429
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Figure 5.9: As in Fig.5.8but now different lines represent the matches obtained when
comparing the numerical waveforms of the binaryr0 computed at different
resolutions. The matches are computed for the LIGO detector, but very
similar behaviors can be shown also for the other detectors.



Chapter 5: Gravitational Wave Detector Data Analysis 180

The results reported in Fig.5.9and in Table5.4show thatMbest,minmax[∆x1,∆x2] >
Mbest,minmax[h1, h2], thus that the differences we measure in the overlaps among two dif-
ferent waveformsh1 andh2 are always larger than the differences we are able to measure
at two different resolutions∆x1 and∆x2. In other words, the differences in the wave-
forms across the spin diagram are always larger than our numerical errors, even along the
degenerateu-sequence (of course, as we have a convergent numerical code, the match
between medium and low resolution is worse than the match between medium and high
resolution). As long as the dominantℓ = 2,m = 2 mode is considered, the differences
in the matches are well within the margin of error for numerical relativity simulations of
black hole binaries throughout the field. A recent work has infact estimated that the dif-
ferences in the waveforms produced by distinct codes isMmismatch = 1−M ≈ 10−4 for
the last≈ 1000M of the dominant mode of non-spinning equal mass coalescence[239].
Since the next higher modeℓ = 3,m = 2 starts to suffer from numerical noise, it does
not yield the same high agreement, and the differences between best and minimax match
show a larger deviation.

As a final comment on the accuracy of our waveforms, we note that the error made by
using waveforms extracted at a finite radius, and not extrapolated at spatial infinity is well
within the error budget of our estimates. We have validated this by comparing the wave-
forms extracted at a finite radius against the waveforms computed at future null infinity,
via a newly developed Cauchy-characteristic code [240]. Inthe case of the nonspinning
configurations0 we have found an error in the calculated SNR of less than1.0%.

5.1.10 SNR Fits

As discussed in Sect.5.1.5, the maximum SNR depends on several factors, most notably
on the two initial spins, the total mass of the system and, although more weakly, on the
number of multipoles included in the waveforms. The resulting functional dependencies
when one degree of freedom is suppressed and the SNRs are presented in terms of the
total projected spin are shown in Figs.5.3, 5.5 and are too cumbersome to be described
analytically. However, most of the complex functional dependence can still be captured
when concentrating on the best case scenario, and hence on the SNRs relative to the opti-
mal massMopt. The behaviour of the SNR in this case is shown in Fig.5.10, where the
different symbols show the numerically computed values ofρmax(a,Mopt) for the differ-
ent detectors. Fig.5.10represents the cross section along the optimal mass of Figs.5.3
and5.5 (note that the SNR for the advanced detectors have been divided by7 to make
them fit onto the same scale).

The behaviour of the SNR in this case is sufficiently simple that it can be represented
with a simple quartic polynomial of the type

ρmax(a; ℓ ≤ 4,M = Mopt) =

4∑

n=0

kna
n , (5.18)

whose coefficientskn are reported in Table5.5for the five detectors considered.

When considering the optimal mass, the ratio of the SNRs for maximally an-
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Figure 5.10:Different symbols show the numerically computed values of
ρmax(a,Mopt) for the different detectors and represent therefore
the cross section along the optimal mass of Figs.5.3 and5.5. Note that
the SNR for the advanced detectors have been divided by7 to make them
fit onto the same scale.
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tialigned spinning binaries to maximally and aligned spinning binaries,i.e., ρmax(a =
1)/ρmax(a = −1) is ∼ 3 for both the LIGO and Virgo detectors. This ratio is also pre-
served when considering the advanced LIGO and Virgo detectors. Because the event rate
scales like the cube of the SNR [cf. expressions (5.9)-(5.12)], an increase of a factor∼ 3
in the SNR of binaries witha = −1 anda = 1 will translate into an increase of a factor
∼ 27 in the event rate. It is therefore likely that many of the binaries observed will have
high spins and aligned with the orbital angular momentum. This will be particularly true
in the case of LISA if the prediction that the spins of supermassive black holes are aligned
with the orbital angular momentum will hold [203].

5.1.11 Radiated Energy Fits

While the SNR is effectively a measure of the amount of energyreleased during the inspi-
ral, it also incorporates information on the properties of the detectors and is not therefore
an absolute measure of the efficiency of the gravitational-wave emission process. This
information can have a number of important astrophysical applications. In particular, it
can be used to study the effect the merger has on the dynamics of the circumbinary disk
accreting onto the binary when this is massive [241,242].

Table 5.5: Fitting coefficients for the maximum SNR computed for the optimal mass
[Eq. (6.5)]. The different rows refer to the various detectors and have been
computed including all modes up toℓ = 4.

detector k0 k1 k2 k3 k4

LIGO 50.76 27.11 13.43 8.58 4.63
eLIGO 102.45 53.63 25.33 17.67 11.26
AdLIGO 1020.42 492.25 243.60 153.84 46.99
Virgo 71.86 35.23 17.140 10.92 3.789
AdVirgo 968.08 481.52 236.45 140.69 37.91

In this Section I present a simple formula to compute the amount of energy released
and express it only in terms of the initial spins. Our formulais restricted to aligned
binaries. In practice, the expression for the radiated energyErad is derived by combining
a fit to the numerical data for the binaries at an initial and finite separationD = 8M (we
refer to this energy as toENR

rad ), with the estimate of the energy released from the binary
when it goes from an infinite separation down toD (we refer to this energy asEPN

rad), i.e.,

Erad = ENR
rad + EPN

rad = MADM −Mfin + EPN
rad (5.19)

whereMADM is the initial ADM mass as measured at spatial infinity of the binary with
separationD, andMfin the Christodoulou mass of the final black hole. For the fit of the
radiated energy during the numerical evolution,ENR

rad , we use the same symmetry argu-
ments first made in Chapter [4] to write a simple expression which is a Taylor expansion
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in terms of the initial spins

ENR
rad (q = 1, a1, a2)

M
= p0 + p1(a1 + a2) + p2(a1 + a2)

2 .

(5.20)

Fitting then the numerical data as in Chapter [4] we obtain the following values for the
coefficients

p0 =
3.606 ± 0.0271

100
, p1 =

1.493 ± 0.0260

100
,

p2 =
0.489 ± 0.0254

100
. (5.21)

where the reduced chi-squared isχ2
red = 0.008, and where the largest error is in the

2nd-order coefficient but this is only∼ 5%. Expressed in this way, the different coeffi-
cients (5.21) can then be interpreted as the nonspinning orbital contribution to the energy
loss (p0, which is the largest and of∼ 3.6%), the spin-orbit contribution (p1, which is
. 3.0%), and the spin-spin contribution (p2, which is. 2.0%). The relative error be-
tween the numerically computed value ofENR

rad and the fitted one is reported in the last
column of Table5.1.

The PN expression for the energy radiated by the binary when going from an infinite
separation down to a finite oner = d, depends on the total mass of the binary, the mass
ratio and the spin components,i.e.,EPN

rad = EPN
rad(r,M, ν, a1, a2). Exploiting the fact that,

for equal-mass binaries, the PN radiated energyEPN
rad follows the same series expansion

used forENR
rad , namely a polynomial of the total spin, in this case, settingM = 1 = q we

obtain

EPN
rad(a1, a2)

M
= EPN

rad,0

+EPN
rad,1(a1 + a2) + EPN

rad,2(a1 + a2)
2 ,

(5.22)

where the coefficients forD = 8M are given by

EPN
rad,0 =

6401

524288
≃ 1.220

100
,

EPN
rad,1 =

985

1048576
√

2
≃ 0.0664

100
,

EPN
rad,2 = − 1

32768
≃ −0.00305

100
. (5.23)

Inspection of the coefficients (5.23) reveals that the PN orbital contribution is only∼ 33%,
the one of the strong-field regime, but also that the spin-related PN contributions are
mostly negligible, being at most of∼ 4% of those produced in the last orbits.

We can now combine expressions (5.20)-(5.21) with expressions (5.22)-(5.23) and es-
timate that for equal-mass binaries with aligned spins the energy radiated via gravitational
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waves from infinity

Erad(a1, a2)

M
= p̃0 + p̃1(a1 + a2) + p̃2(a1 + a2)

2 , (5.24)

where

p̃0 =
4.826

100
, p̃1 =

1.559

100
, p̃2 =

0.485

100
. (5.25)

These numbers are specific to equal-mass binaries and refer to a situation in which the
match between the PN evolution and the one in the strong-fieldregime is made at a specific
separation ofD = 8M . However, we expect the results to depend only weakly on this
matching separation (as long as it is within a PN regime) and hence that expressions (5.24)
and (5.25) are generically valid at the precision we are considering them here, namely
∼ 5%.

Using expression (5.24) a number of quantitative considerations are possible. Firstly,
the largest energy is emitted by equal-mass, maximally spinning binaries with spins par-
allel and aligned with the orbital angular momentum at isErad(a = 1)/M = 9.9%. Sec-
ondly, equal-mass nonspinning binaries lose a considerable fraction of their mass via ra-
diation, withErad(a = 0)/M = 4.8%, while maximally spinning binaries with spins par-
allel and antialigned with the orbital angular momentum haveErad(a = −1)/M = 3.7%.

Expression (5.24) is not a strictly monotonic function of the total spin and has a local
minimum ata1 = a2 = −p̃1/(4p̃2) ≃ −0.8 rather than ata1 = a2 = −1, and yields
Erad(a = −0.79)/M = 3.6% (Fig. 5.11). Although rather shallow, we do not expect
such a local minimum. We therefore interpret it as an artifact of the numerical error of
our calculations (the difference between the energy radiated ata1 = a2 = −1 and that
at a1 = a2 = −0.8 is ∼ 2% and hence compatible with our overall error). Such a local
minimum can be removed by adding higher-order terms in expression (5.20) (up to 4th
order ina1 + a2) but these improvements are so small that they do not justifythe use of a
more cumbersome expression. A comparison between the numerical values and the fitting
expression5.24is shown in Fig.5.11, where crosses and squares represent theENR

rad and
Erad respectively, along the diagonal of the spin-diagram (i.e., for a1 = a2), while the
continuous line refers to our fitting expression. Note that such a line is a 1-dimensional
cut of a 2-dimensional surface and hence it is not expected toexactly fit all points.

Lousto and collaborators have recently proposed a more general formula that should
account for the radiated energy in all of the relevant space of parameters, namely for bina-
ries with arbitrary mass ratio, spin orientation and size [12]. Restricting their expression
to the specific subset of binaries considered here corresponds to setting in their expression
(2): EB = EE = 0, ν = 1/4 andq = 1. The resulting expression is

ERIT
rad

M
=

1

4
EISCO +

1

16
E2 +

1

64
E3

+
1

64

[
ES(a1 + a2) + EA(a1 + a2)

2

+ ED(a1 − a2)
2
]
, (5.26)
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Figure 5.11:Energy radiated during the numerical calculationENR
rad (crosses), the total

radiated energyErad = ENR
rad + EPN

rad (squares) along the diagonal of the
spin diagram,i.e., for a1 = a2. Shown as a continuous line is the analytic
expressions given here (AEI fit), while the dashed line is theone suggested
in ref. [12] (RIT fit). Note that the lines represent 1-dimensional cuts of
2-dimensional surfaces and hence are not expected to fit wellall points.
Finally, indicated with a dotted line is the prediction for the radiated energy
coming from the point-particle approach of [4] and refined in[13].



Chapter 5: Gravitational Wave Detector Data Analysis 186

where the fitting coefficients have been determined to beE2 = 0.341 ± 0.014, E3 =
0.522 ± 0.062, ES = 0.673 ± 0.035, EA = −0.014 ± 0.021, ED = −0.26 ± 0.44 [12],
and where

EISCO =

(
1 −

√
8

3

)
+

0.103803

4

+
1

48
√

3
(a1 + a2) +

5

648
√

2
(a1 − a2)

2 . (5.27)

After a bit of algebra we can rewrite (5.27) as

ERIT
rad (a1, a2)

M
= q̃0 + q̃1(a1 + a2) + q̃2(a1 + a2)

2 + q̃3(a1 − a2)
2 , (5.28)

where now

q̃0 =
1

4

(
1 −

√
8

3
+

0.103803

4

)
+
E2

16
+
E3

64
≃ 5.025

100
,

q̃1 =
1

192
√

3
+
ES
64

≃ 1.352

100
,

q̃2 =
EA
64

≃ −0.0219

100
,

q̃3 =
5

2592
√

2
+
ED
64

≃ −0.270

100
. (5.29)

Comparing (5.24)-(5.25) with (5.28)-(5.29) shows that the reduced expression from [12]
has a second order contribution∼ (a1 − a2)

2, which is absent in our expression. The re-
maining coefficients are rather similar but not identical. This comparison is summarized
in Fig. 5.11, where the dashed line corresponds to the fitting proposed inref. [12]. The
maximum efficiency for maximally spinning black holes predicted by expression (5.28)
is∼ 8%, but our estimate is larger and∼ 10%.

While the two expressions provide very similar estimates for −0.5 . a1 = a2 . 0.4,
they also have predictions differing by more than∼ 20% for highly spinning binaries.
Expressions (5.28)-(5.29) have error-bars that are as high as100%. In view of this, and of
the fact that the coefficients are constant, the simulationscarried out here could be used
for a new estimate of the free coefficientsE2, E3, ES , andEA in (5.28). Finally, indicated
with a dotted line in Fig.5.11 is the prediction for the radiated energy coming from the
point-particle approach of [4] and refined in [13].

5.1.12 Discussion

We have considered in detail the issue of the detectability of binary system of black
holes having equal masses and spins that are aligned with theorbital angular momen-
tum. Because these configurations do not exhibit precessioneffects, they represent a
natural ground to start detailed studies of the influence of strong-field spin effects on
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gravitational wave observations of coalescing binaries. Furthermore, such systems may
be the preferred end-state of the inspiral of generic supermassive binary black-hole sys-
tems [201–203]. In view of this, we have computed the inspiral and merger of a large
set of binary systems of equal-mass black holes with spins parallel to the orbital angular
momentum but otherwise arbitrary. Attention is, thus, focused on the gravitational-wave
emission so as to provide answers to questions such as what are the “loudest” and “qui-
etest” configurations and what is the difference in SNR between the two.

Overall we find that the SNR ratio increases with the projection of the total black
hole spin in the direction of the orbital momentum. In addition, equal-spin binaries with
maximum spin aligned with the orbital angular momentum are more than “three times as
loud” as the corresponding binaries with anti-aligned spins, thus corresponding to event
rates up to27 times larger. On average these considerations are only weakly dependent
on the detectors, or on the number of harmonics considered inconstructing the signal.

We have also investigated whether these binaries can lead toa degenerate patch in
the space of templates. We do this by computing the mismatch between the different
spinning configurations. Within our numerical accuracy we have found that binaries with
opposite spinsS1 = −S2 cannot be distinguished, whereas binaries with spinS1 = S2

have clearly distinct gravitational-wave emissions. Thisresult may represent a serious
obstacle towards a proper estimate of the physical parameters of binaries and will probably
be removed only if the SNR is sufficiently high.

Finally, we have derived a simple expression for the energy radiated in gravitational
waves, and find that the binaries always have efficienciesErad/M & 3.6%. This can
become as large asErad/M ≃ 10% for maximally spinning binaries with spins aligned
to the orbital angular momentum.

5.2 Spin Templates

Building on the simulations and analysis preformed in Chapter [4] and on the analysis
performed in the previous section, we present the first analytical inspiral-merger-ringdown
gravitational waveforms from black-hole (BH) binaries with non-precessing spins. By
matching a post-Newtonian description of the inspiral to a set of numerical calculations
performed in full general relativity, we obtain a waveform family with a conveniently
small number of physical parameters. The physical content of these waveforms includes
the “orbital hang-up” effect, when BHs are spinning rapidlyalong the direction of the
orbital angular momentum. These waveforms will allow us to detect a larger parameter
space of BH binary coalescence, to explore various scientific questions related to GW
astronomy, and could dramatically improve the expected detection rates of GW detectors.

As discussed in Section [2.2], while the inspiral and ring-down stages of the BH
coalescence are well-modeled by perturbative techniques,an accurate description of
the merger requires numerical solutions of Einstein’s equations. Although perform-
ing numerical simulations over the entire parameter space of BH coalescence is com-
putationally prohibitive, waveform templates modeling all three stages of BH coales-
cence can be constructed from existing simulation and PN data by combining those
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Figure 5.12:Phenomenological parametersψk, f1, f2, f3 and σ computed from the
equal-spinhybrid waveforms (dots), and the analytical fits given by
Eq. (5.32) (surfaces). Test-mass limit is indicated by black traces.η is
the symmetric mass ratio andχ is the spin parameter.

analytical- and numerical-relativity results. Thus dramatically improving the sensitivity
of searches for GWs from BH binaries, and the accuracy of estimating the source param-
eters [7, 14, 243, 244]. To date, “complete” inspiral-merger-ringdown (IMR) templates
have been computed only for nonspinning BH binaries [7,14,15,209,244], which are ef-
fectively employed in GW searches, and in a number of astrophysical studies [245–247].
However, nonspinning BHs are expected to be astrophysically rare, and most BHs in na-
ture may be highly spinning [248–250]. This necessitates the inclusion of spinning-binary
waveforms in detector searches.

In this section, I present an inspiral-merger-ringdown (IMR) waveform family
modelling the dominant harmonic of binaries with non-precessing spins (i.e., spins
parallel/anti-parallel to the orbital angular momentum).These waveforms will signifi-
cantly improve the “distance reach” of present and future GWdetectors and will facil-
itate various astrophysical studies. Aligned-spin binaries are an astrophysically inter-
esting population as such systems are expected from isolated binary evolution and in
gas-rich galactic mergers [201–203]. Such systems also exhibit important strong-gravity
effects like the “orbital hang-up”. We make use of the degeneracies in the physical pa-
rameters to parametrize our waveform family by only the total massM ≡ m1 + m2

of the binary, the symmetric mass ratioη ≡ m1m2/M
2, and asingle spin parameter

χ ≡ (1 + δ)χ1/2 + (1 − δ)χ2/2, whereδ ≡ (m1 −m2)/M andχi ≡ Si/m
2
i , Si being

the spin angular momentum of theith BH. The last feature is motivated by the observation
(see e.g., [251]) that the leading spin-orbit-coupling term in post-Newtonian waveforms
is dominated by this parameter.

5.2.1 Numerical simulations

Binary BH (BBH) waveforms covering at least eight cycles before merger were produced
by solving the full Einstein equations numerically, as written in the “moving-puncture”
3+1 formulation described in Section [2.4.4]. The numerical solutions were calculated
with the BAM [153, 252] andCactus described in Section [2.7] codes, starting with
initial data that model BHs with conformally flat punctures [49,61]. Initial momenta were
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chosen to give low-eccentricity inspiral, using either an extension of the method described
in [88], or the quasicircular formula used in [253]. GWs wereextracted atRex = 90M
with BAM andRex = 160M with Cactus, using the procedures discussed in Section
[2.6.3]. In all simulations the GW amplitude is accurate to within at least 10% and the
phase accurate to within at least 1 radian over the duration of the simulation. Studies in
the equal-mass nonspinning case suggest that these waveforms are within the accuracy
requirements for both GW detection and source parameter estimation with the current
LIGO and Virgo detectors as shown in Section [5.1].

Five sets of simulations were used in this paper:

1. Equal-mass binaries with spins equal and parallel to the binary’s orbital angular
momentum, withχi = ±{0.25, 0.5, 0.75, 0.85}.

2. The same general non-precessing spin configuration, but usingunequal-massbina-
ries withq ≡ m1/m2 = {2, 2.5, 3} andχi = {±0.5, 0.75}.

3. Nonspinning binaries withq = {1, 1.5, 2, 2.5, 3, 3.5, 4}.

4. Unequal-mass, unequal-spin binaries withq = {2, 3} and(χ1, χ2) = (−0.75, 0.75).

5. Equal-mass, unequal-spin binaries withχi = ±{0.2, 0.3, 0.4, 0.6}.

The simulation sets (1)–(4) were performed with theBAM code, while set (5) was per-
formed with theCactus code. The analytical waveform family is constructedonly em-
ploying the equal-spin simulation sets (1)–(3), while sets(4) and (5) were used to test the
efficacy of the template family to model the expected signalsfrom more general spin/mass
configurations.

5.2.2 Constructing hybrid waveforms

Following [14, 209], we produce a set of “hybrid waveforms” by matching post-
Newtonian (PN) and numerical-relativity (NR) waveforms inan overlapping time interval
[t1, t2]. These hybrids are assumed to be the target signals that we want to detect. For
the PN inspiral waveforms we choose the “TaylorT1” approximant [254] waveforms at
3.5PN [228] phase accuracy. This is motivated by PN-NR comparisons of equal-mass
spinning binaries, in which the accuracy of the TaylorT1 approximant was found to be
the most robust [208, 225]. We include the 3PN amplitude corrections to the dominant
quadrupole mode [234] and the 2.5PN spin-dependent corrections [251], which greatly
improved the agreement between PN and NR waveforms.

If h(t) = h+(t)− ih×(t) denote the time-domain waveform from a binary, we match
the PN and NR waveforms,hPN(t) andh

NR(t), by minimizing their integrated squared
difference,

D ≡ min
∆t,∆ϕ0,a

∫ t2

t1

∣∣hPN(t+ ∆t, ϕ0 + ∆ϕ0) − a h
NR(t, ϕ0)

∣∣2 (∂t − Lβ) , (5.30)

whereϕ0 is the initial phase of the wave anda is a scale factor that reduces the PN-
NR amplitude difference. The NR waveforms are combined withthe “best-matched” PN
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Figure 5.13:Fitting factor and faithfulness (in LIGO noise spectrum) ofnon-spinning
phenomenological templates with spinning hybrid waveforms constructed
from NR simulations sets (1), (2) and (3).

waveforms in the following way:hhyb(t) ≡ aτ(t) h
NR(t) + (1 − τ(t)) h

PN(t), whereτ
ranges linearly from zero to one fort ∈ [t1, t2].

5.2.3 Efficiency of non-spinning IMR templates to search forbinaries with
non-precessing spins

It has been shown that PN inspiral signals from binaries withnon-precessing spins can be
detected using non-spinning PN templates without significant loss of SNR [255]. Here we
show that, in the case of complete coalescence signals, significant loss of SNR is incurred
upon neglecting the spin effects even in the absence of spin-induced precession. As a
demonstration, we estimate the efficiency of the non-spinning IMR templates proposed in
Refs. [14,15,209] in detecting GWs from binaries with non-precessing spins by comput-
ing thefitting factor [256] (FF) andfaithfulness[236] of the non-spinning templates with
the spinning hybrid waveforms discussed previously (Fig.5.16). Given a target wave-
form, FF is the maximizedmatch[257] between the target and templates drawn from the
template bank, while the faithfulness is measured by takingthe match between the target
and the template with the same physical parameters. Note that the standard criteria for
templates used in searches is that the FF exceed 0.97, which corresponds to a loss of no
more than 10% of signals due to mismatch of signal and templates. FFs as low as 0.8 sug-
gest that∼50% binaries may go undetected if nonspinning IMR templatesare employed
to search for binaries with high spins (in the hang up configuration), while faithfulness as
low as 0.3 suggest that the estimated parameters will be significantly biased.
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5.2.4 Waveform templates for non-precessing binaries

The analytical waveforms family to model GWs from binaries with non-precessing spins
that we construct can be written in the Fourier domain ash(f) ≡ A(f) e−iΨ(f), where

A(f) ≡ Cf
−7/6
1





f ′−7/6 (1 +
∑3

i=2 αi v
i) if f < f1

wm f
′−2/3 (1 +

∑2
i=1 ǫi v

i) if f1 ≤ f < f2

wr L(f, f2, σ) if f2 ≤ f < f3,

Ψ(f) ≡ 2πft0 + ϕ0 +
3

128ηv5

(
1 +

7∑

k=2

vk ψk
)
. (5.31)

In the above expressions,f ′ ≡ f/f1, v ≡ (πMf)1/3, ǫ1 = 1.4547χ − 1.8897, ǫ2 =
−1.8153χ+ 1.6557, C is a numerical constant whose value depends on the sky-location
and orientation of the binary as well asM andη, αi (α2 = −323/224 + 451 η/168 and
α3 = (27/8 − 11 η/6)χ) are the PN corrections to the Fourier domain amplitude of the
(ℓ = m = ±2 mode) PN inspiral waveform [251],t0 is the time of arrival of the signal
at the detector andϕ0 the corresponding phase,L(f, f2, σ) a Lorentzian function with
widthσ centered around the frequencyf2,wm andwr are normalization constants chosen
so as to makeA(f) continuous across the “transition” frequenciesf2 andf1, andf3 is
a convenient cutoff frequency such that the power of the signal above this frequency is
negligible. The phenomenological parametersµj = {f1, f2, σ, f3} andψk are written in
terms of the physical parameters of the binary as:

πMµj = aj0 + aj1 η + aj2 η
2 + bj1 χ+ cj11ηχ+ cj21 η

2χ+ bj2 χ
2

+ cj12 ηχ
2 + +cj22 η

2χ2 + bj3 χ
3 + cj13 ηχ

3 + bj4 χ
4,

ψk = ak0 + ak1 η + ak2 η
2 + bk1 χ+ ck11 η χ+ ck21 η

2 χ

+ bk2 χ
2 + ck12 η χ

2 + ck22 η
2 χ2 + bk3 χ

3 + ck13 η χ
3,

ψk =

3∑

i=1

N∑

j=0

x
(ij)
k νiχj , µk =

3∑

i=1

N∑

j=0

y
(ij)
k νiχj

πM
, (5.32)

whereN ≡ min(3− i, 2) while x(ij)
k andy(ij)

k are tabulated in Table5.6. Figure5.12
plots the values ofψk andµj estimated from the hybrid waveforms, as well as the fits
given by Eq. (5.32).

We match these waveforms to 2PN accurate adiabatic inspiralwaveforms in the
extreme-mass-ratio limit. These Fourier-domain waveforms are constructed from a PN
expansion of the (exact) binding energy given in Ref. [258] and the 4PN-accurate GW
luminosity given in Ref. [259]. In theη → 0 limit, the phenomenological parameters
reduce to the following quantities:

f1 → fISCO, f2 → fQNM, σ → fQNM/Q, ψk → ψ0
k, (5.33)

wherefISCO andfQNM are the frequencies of the innermost stable circular orbit [258]
and the dominant quasi-normal mode, andQ is the ring-down quality factor [260] of a
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Figure 5.14:Fitting factor and faithfulness of the spinning templates with equal-spin
hybrid waveforms (using Initial LIGO noise spectrum).

Kerr BH with massM and spinχ, while ψ0
k are the Fourier domain phasing coefficients

of a test-particle inspiralling into the Kerr BH, computed using the stationary-phase ap-
proximation.

The test-particle-limit waveforms suffer from two limitations: 1) we assume that the
evolution of the GW phase at the merger and ringdown stages isa continuation of the adi-
abatic inspiral phase, and 2) in the absence of a reliable model for plunge, we approximate
the amplitude of the plunge withf ′−2/3 (1 +

∑2
i=1 ǫi v

i). Nevertheless, in the test-mass
limit, it is expected that the signal will be dominated by thelong inspiral stage (followed
by a quick plunge and ringdown), and the inspiral is guaranteed to be well-modelled by
our waveform family. More importantly, the imposition of the appropriate test-mass limit
in our fitting procedure ensures that the waveforms are well behaved even outside the
parameter range where current NR data are available. Because of this, and the inclusion
of the PN amplitude corrections, these waveforms are expected to be closer to the actual
signals than the templates proposed in [14, 15] in the non-spinning limit (thus explaining
the difference between the two waveform families).

5.2.5 Efficiency of the new templates

We have examined the “faithfulness” of the new templates in reproducing the hybrid
waveforms by computing thematch(noise-weighted inner product) with the hybrids. Loss
of the SNR due to the “mismatch” between the template and the true signal is determined
by the match maximized over the whole template bank – calledfitting factor (FF). The
standard criteria for templates used in searches is that FF> 0.97, which corresponds to a
loss of no more than 10% of signals.

Match and FF of the analytical waveforms with the equal- (unequal-) spin hybrid
waveforms are plotted in Fig.5.14 (Fig. 5.15), using Initial LIGO design noise spec-
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S
pin

Tem
plates

ak0 ak1 ak2 bk1 ck11 ck21 bk2 ck12 ck22 bk3 ck13
ψ0

3
128 0.0646073 -0.224362 0 -0.0716615 0.163815 0 -0.0516322 0.138573 0 -0.0215617

ψ2
3715
32256 -22.6941 74.1756 0 25.8917 -59.3562 0 11.3617 -29.9764 0 6.82523

ψ3 −3π
8 311.778 -975.843 113

128 -360.174 825.57 0 -99.9086 254.819 0 -87.6832
ψ4

15293365
21676032 -1926.1 5810.99 0 2277.21 -5240.68−1215

1024 238.604 -504.838 0 511.14
ψ6 -6.52151 -12022.7 33859.1 1135π

64 15849.8 -36586.5 75515
12288 -4201.5 13246.1 0 3011.27

ψ7
77096675π
10838016 10887.1 -30453.7 −25150083775

130056192 -14481.1 33615.9 −2445π
256 7029.33 -21536.9 14585

1024 -3011.14

ak0 ak1 ak2 bk1 ck11 ck21 bk2 ck12 ck22 bk3 ck13 bk4
fcut 0.2444 0.2234 0.9619 0.05705 -0.1312 -0.0298 -0.002173 1.737 -6.862 0.02415 0.286 0.03336
fmerg 0.06827 0.08025 -0.4084 0.04278 -0.8408 2.29 0.02721 -0.6356 1.243 0.06494 -0.2461 0.05771
fring 0.1857 -0.1874 1.838 0.0905 -0.3844 0.9942 0.02188 0.6775 -2.859 0.03691 0.1113 0.03826
σ 0.09171 0.01898 -0.5766 0.007786 0.1434 -0.3237 -0.00496 -0.7896 3.608 -0.01951 -0.205 -0.02738

Table 5.6: Coefficients describing the amplitude and phase of the phenomenological waveforms. See Eq. (5.32).
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Figure 5.15:Fitting factor of the spinning templates withunequal-spinhybrid wave-
forms (using Initial LIGO noise spectrum). Parameters(q, χ1, χ2) of the
hybrid waveforms are shown in legends.

trum [261]. Note that the analytical waveform family is constructed employingonly
the equal-spin hybrid waveforms. The PN–NR matching regionused to construct the
unequal-spin hybrids are also different from that used for equal-spin hybrids. These fig-
ures demonstrate the efficacy of the analytical templates inreproducing the target wave-
forms – templates are “faithful” (match> 0.97)either when the massesor the spins are
equal, while they arealways“effectual” in detection (FF> 0.97). These figures may be
contrasted with Fig.5.16, which details the effect of neglecting spin in the construction
of the templates. This figure plots the matches of the non-spinning IMR template family
proposed in [14, 15] with the equal-spin hybrid waveforms. FFs as low as 0.8 suggest
that up to 50% binaries may go undetected if nonspinning IMR templates are employed
to search for binaries with high spins (in the “hang-up” configuration), while matches as
low as 0.3 suggest that the estimated parameters will be significantly biased.

Effective distance to optimally oriented BBHs (modeled by the new templates) pro-
ducing optimal SNR of 8 at Initial LIGO noise spectrum is shown in Fig. 5.17, which
demonstrates the dramatic effect of spin for detection of high-mass binaries; if most BBHs
are highly spinning, then LIGO will be able to detect BH coalescences up to 1Gpc, thus
increasing the event rates as much as five times compared to predictions based on models
of nonspinning binaries. For Enhanced LIGO/Advanced LIGO detectors, the peak hori-
zon distances are 2Gpc/19Gpc and similar improvements overthe nonspinning templates
are found.

5.2.6 Discussion

We find that as many as 50% of signals may be lost when non-spinning IMR templates are
used to search for binaries with non-precessing spins aligned to the angular momentum.
To address the need for spinning IMR templates, we combine state-of-the-art results from
analytical and numerical relativity to construct for the first time a family of analytical IMR
waveforms for BBHs with non-precessing spins from “first principles”. These templates
do not contain unphysical parameters, and we show that for the purposes of GW detection
it is sufficient to represent the spins by a single parameter.This will considerably sim-
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Figure 5.16:Match and FF ofnon-spinningIMR templates proposed in [14,15] with the
equal-spin hybrid waveforms. A comparison with Fig.5.15demonstrates
the effect of neglecting spins.

plify the use of our waveforms in GW searches in the near future. This method can readily
be generalized to incorporate non-quadrupole spherical-harmonic modes, larger portions
of the binary BH parameter space and further information from analytical approximation
methods or numerical simulations which are more accurate orextend the parameter space.
This will significantly accelerate the incorporation of NR results into the current effort for
the first direct detection of GW signals. There are many otherimmediate applications of
our waveforms: injections into detector data will help to put more realistic upper limits
on the rate of BBH coalescences [245, 246] (thus directly leading to astrophysical re-
sults), and to compare the different algorithms employed inthe search for GWs from
BBHs [210], while employing these in population-synthesisstudies will provide more
accurate coalescence rates observable by the current and future detectors. Comparisons
with precessing waveforms will help us to understand the implications of spin precession
for detecting binaries with larger masses, and the waveforms will be used to characterize
the effect of (non-precessing) spins in the parameter-estimation of BH binaries.
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Figure 5.17:Effective distance to optimally-oriented, equal-mass binaries with (equal)
spinχ producing optimal SNR 8 in Initial LIGO.
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Conclusions

Coalescing black-hole (BH) binaries are among the most promising candidate sources for
the first direct detection of gravitational waves (GWs). Such observations will lead to pre-
cision tests of the strong-field predictions of general relativity as well as provide a wealth
of information relevant to fundamental physics, astrophysics, and cosmology [262]. Com-
putation of the expected waveforms from such sources is a keygoal in current gravita-
tional research. The results in this thesis are steps to assist in this process.

6.1 Boundary Conditions

Besides the importance of having a well-posed system, thereis a practical consequence of
defining correct conditions at the boundary. This is the factthat this choice allows one to
place the boundary conditions, in principle, in any place where the linearized assumptions
hold, thus reducing the need for making large numerical grids with the consequence of
savings in computational resource requirements needed to simulate a given problem.

I have examined the initial boundary value problem for the second-order formulation
of the Einstein equations in the generalized harmonic gauge. The system of evolution
equations for this finite-difference harmonic code was derived in [40] where it was shown
to be accurate, stable, and convergent for long-term evolutions of black hole space-times,
such as head-on collisions of two black holes, isolated black holes, and binary black
hole inspiral and merger. I described the derivation, implementation and testing of a new
boundary treatment for this system. I demonstrated that this new treatment maintained the
validity and convergence (to lower order) seen with the standard boundary treatments. I
additionally showed that these conditions give us greater accuracy (for all reasonable res-
olutions), improved constraint preservation, improved boundary transparency, and greater
stability in robust stability tests.

I have derived boundary conditions that preserve the constraints and lead to a well-
posed initial-boundary value problem for the BSSN formulation based on the work of
Dario Nuñez and Olivier Sarbach. These conditions are givenin terms of the variable
fields and its derivatives at the boundary. I have shown that the final system is indeed
symmetric hyperbolic and preserves the constraints in the linear, constant coeeficient limit
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for conformally flat data. I have also given a discussion related the numerical implemen-
tation of these boundary conditions. Unlike standard methods, one does not over-specify
the conditions on the boundary surface for the method proposed in Section [3.2].

With binary black hole evolutions now extending over multiple orbits, and thus many
crossing times on conventional computational grids, boundary effects can potentially have
a non-trivial influence on the late-time dynamics and extracted gravitational wave signals
from such simulations. For sufficiently distant boundariesin the linearized regime, the
boundary conditions described in the present work will helpto make the numerical evolu-
tions of relativistic spacetimes more robust. In terms of practical gain, there is still much
work to be done in order to quantify the importance of using adequate boundary condi-
tions. However, any improvement in accuracy and efficiency is a valuable contribution
for the current state of the field of numerical relativity.

6.2 Physics

Using the results from a number of numerical simulations forbinary black hole initial
data, I have considered the spin vector of the BH produced by aBH binary merger as
the sum of the two initial spins and of a third vector, parallel to the initial orbital angular
momentum, and measures the orbital angular momentum not radiated. Without other fits
than those already available to model aligned/antialignedbinaries, I have measured the
unknown vector and derived a formula that accounts for all ofthe 7 parameters describ-
ing a BH binary inspiralling in quasi-circular orbits. The equations (4.71) and (4.74),
encapsulate the near-zone physics to provide a convenient,as well as robust and accurate
prediction over a wide range of parameters, determination of the merger product of rather
generic BH binaries.

Testing the formula against all of the available numerical data from recent publications
and from our own simulations has revealed differences between the predicted and the
simulated values of a few percent at most. This approach is intrinsically approximate and
it has been validated on a small set of configurations. It can be improved: by reducing the
χ2 of the fitting coefficients as new simulations are carried out; by using fitting functions
that are of higher-order than those in expressions (4.58) and (4.65); by estimatingJ⊥

rad

through PN expressions or by measuring it via numerical simulations.

Overall, the data sample computed numerically consists of 38 values for|vkick| and
for afin which, for simplicity, we have considered to have constant error-bars of8 km/s
and0.01, which represent, respectively, the largest errors reported in [87]. In both cases
we have modelled the data with generic quadratic functions in a1 anda2 so that, in the
case of the recoil velocity, the fitting function is

|vkick| = |c0 + c1a1 + c2a
2
1 + d0a1a2 + d1a2 + d2a

2
2| . (6.1)

The fitting function on the right-hand-side of (6.1) is smooth everywhere but that its abso-
lute value is not smooth along the diagonala1 = a2. Using (6.1) and a blind least-square
fit of the data, we obtained the coefficients (inkm/s) with a reduced-χ2 = 0.09. I can
use the constraint that no recoil velocity should be produced for binaries having the same
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spin, i.e., that|vkick| = 0 for a1 = a2, or the symmetry condition across the linea1 = a2.
Enforcing both constraints yields

c0 = 0 , c1 = −d1 , c2 = −d2 , d0 = 0 , (6.2)

thus reducing the fitting function (6.1) to the simpler expression

|vkick| = |c1(a1 − a2) + c2(a
2
1 − a 2

2 )| . (6.3)

Performing a least-square fit using (6.3) we then obtain

c1 = −220.97 ± 0.78 , c2 = 45.52 ± 2.99 , (6.4)

with a comparable reduced-χ2 = 0.14, but with error-bars that are much smaller on
average. Because of this, we consider expression (6.3) as the best description of the data
at second-order in the spin parameters.

In the same way we have first fitted the data forafin, with a function

afin = p0 + p1a1 + p2a
2
1 + q0a1a2 + q1a2 + q2a

2
2 , (6.5)

and found coefficients with very large error-bars. As a result, also forafin we resort to
physical considerations to constrain the coefficientsp0 . . . q2. More specifically, at least
at lowest order, binaries with equal and opposite spins willnot contribute to the final spin
and thus behave essentially as nonspinning binaries. Stated differently, we assume that
afin = p0 for binaries witha1 = −a2. In addition, enforcing the symmetry condition
across the linea1 = a2 we obtain

p1 = q1 , p2 = q2 = q0/2 , (6.6)

so that the fitting function (6.5) effectively reduces to

afin = p0 + p1(a1 + a2) + p2(a1 + a2)
2 . (6.7)

Performing a least-square fit using (6.7) we then obtain

p0 = 0.6883 ± 0.0003 , p1 = 0.1530 ± 0.0004 ,

p2 = −0.0088 ± 0.0005 , (6.8)

with a reduced-χ2 = 0.02.

Being effectively a power series in terms of the initial spins of the two black holes,
its zeroth-order term can be seen as the orbital angular momentum not radiated in grav-
itational waves and which amounts, at most, to∼ 70% of the final spin. The first-order
term, on the other hand, can be seen as the contribution to thefinal spin coming from the
initial spins of the two black holes and this contribution, together with the one coming
from the spin-orbit coupling, amounts at most to∼ 30% of the final spin. Finally, the
second-order term, which is natural to expect as nonzero in this view, can then be related
to the spin-spin coupling, with a contribution to the final spin which is of∼ 4% at most.



Chapter 6: Conclusions 200

We further performed simulations with an unequal masses andaligned spins (see Ta-
ble4.6) and obtained a third order polynomial fit for|afin| from arbitrary symmetric mass
ratioν ≡M1M2/(M1 +M2)

2 and the aligned equal spins of the initial BHsa ≡ J/M2,
i.e.,afin ≡ Jfin/M

2
fin = afin(a, ν)

afin = s0 + s1a+ s2a
2 + s3a

3 + s4a
2ν + s5aν

2 +

t0aν + t1ν + t2ν
2 + t3ν

3 . (6.9)

as shown in figure4.17. Determining the remaining five coefficients from a least-square
fit of the available data yielded

s4 = −0.129 ± 0.012 , s5 = −0.384 ± 0.261 ,

t0 = −2.686 ± 0.065 , t2 = −3.454 ± 0.132 ,

t3 = 2.353 ± 0.548 , (6.10)

we then ran simulations for misaligned spins (see table4.7) and obtained a fit for arbitrary
initial spins and mass ratioq ≡M1/M2

|afin| =
1

(1 + q)2

[
|a1|2 + |a2|2q4 + 2|a2||a1|q2 cosα+

2
(
|a1| cos β + |a2|q2 cos γ

)
|ℓ|q + |ℓ|2q2

]1/2
, (6.11)

where

|ℓ| =
s4

(1 + q2)2
(
|a1|2 + |a2|2q4 + 2|a1||a2|q2 cosα

)
+

(
s5ν + t0 + 2

1 + q2

)(
|a1| cos β + |a2|q2 cos γ

)
+

2
√

3 + t2ν + t3ν
2 . (6.12)

These formulae give fairly accurate predictions for the final spin and kick of a merged
black hole and will be useful for studies of the evolution of supermassive black holes and
on statistical studies on the dynamics of compact objects indense stellar systems, as well
as significant effect on the waveform and impact on parameterestimation for gravitational
wave detectors.

6.3 Analysis

We have considered in detail the issue of the detectability of binary system of black
holes having equal masses and spins that are aligned with theorbital angular momen-
tum. Such systems may be the preferred end-state of the inspiral of generic supermassive
binary black-hole systems [201–203]. In view of this, we have computed the inspiral and
merger of a large set of binary systems of equal-mass black holes with spins parallel to
the orbital angular momentum but otherwise arbitrary. Attention is, thus, focused on the
gravitational-wave emission so as to provide answers to questions such as what are the



201 6.3 Analysis

“loudest” and “quietest” configurations and what is the difference in SNR between the
two.

Overall we find that the SNR ratio increases with the projection of the total black
hole spin in the direction of the orbital momentum. In addition, equal-spin binaries with
maximum spin aligned with the orbital angular momentum are more than “three times as
loud” as the corresponding binaries with anti-aligned spins, thus corresponding to event
rates up to27 times larger. On average these considerations are only weakly dependent
on the detectors, or on the number of harmonics considered inconstructing the signal.

We have also investigated whether these binaries can lead toa degenerate patch in
the space of templates. We do this by computing the mismatch between the different
spinning configurations. Within our numerical accuracy we have found that binaries with
opposite spinsS1 = −S2 cannot be distinguished, whereas binaries with spinS1 = S2

have clearly distinct gravitational-wave emissions. Thisresult may represent a serious
obstacle towards a proper estimate of the physical parameters of binaries and will probably
be removed only if the SNR is sufficiently high.

We find that as many as 50% of signals may be lost when non-spinning IMR templates
are used to search for binaries with non-precessing spins aligned to the angular momen-
tum. To address the need for spinning IMR templates, we combine state-of-the-art results
from analytical and numerical relativity to construct for the first time a family of analyt-
ical IMR waveforms for BBHs with non-precessing spins from “first principles”. These
templates do not contain unphysical parameters, and we showthat for the purposes of GW
detection it is sufficient to represent the spins by a single parameter. This will considerably
simplify the use of our waveforms in GW searches in the near future. This method can
readily be generalized to incorporate non-quadrupole spherical-harmonic modes, larger
portions of the binary BH parameter space and further information from analytical ap-
proximation methods or numerical simulations which are more accurate or extend the
parameter space. This will significantly accelerate the incorporation of NR results into
the current effort for the first direct detection of GW signals. There are many other im-
mediate applications of our waveforms: injections into detector data will help to put more
realistic upper limits on the rate of BBH coalescences [245,246] (thus directly leading
to astrophysical results), and to compare the different algorithms employed in the search
for GWs from BBHs [210], while employing these in population-synthesis studies will
provide more accurate coalescence rates observable by the current and future detectors.
Comparisons with precessing waveforms will help us to understand the implications of
spin precession for detecting binaries with larger masses,and the waveforms will be used
to characterize the effect of (non-precessing) spins in theparameter-estimation of BH
binaries.
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Appendix A

Appendix

A.1 Well-posed boundary terms with SAT

Consider a domain represented by a discrete grid consistingof pointsi = imin . . . imax
and gridspacingh = b−a

imax−imin
coveringx ∈ [a, b]. A 1D difference operatorD on such

a domain is said to satisfy SBP with respect to a scalar product (defined by its coefficients
σij)

E = 〈u, v〉 = h
∑

ij

ui · vjσij , (A.1)

if the property
〈u,Dv〉 + 〈v,Du〉 = (u · v) |ba (A.2)

holds for all gridfunctionsu, v ∈ L2[a, b]. The scalar product is diagonal ifσij = σijδi,j .
One advantage of 1D difference operators satisfying SBP with diagonal norms is that SBP
is guaranteed to hold in several dimensions if the 1D operator is used on each direction
(which is not known to hold in the non-diagonal case in general).

For the advection equation∂tu = ∂xu the semidiscrete equation with penalty term is
written as

u̇i = ΛDui +
δi,0T

hσ00
(g − u0). (A.3)

Defining the energy asE = 〈u, u〉, and defining it’s time derivative as

Ė = (Λ − 2T )u2
0 + 2gu0T,≤ (Λ − T )u2

0 + Tg2. (A.4)

With positive speed, we can takeT = Λ + δi,0. For g = 0, we haveĖ = (Λ − 2T )u2
0,

thus showing that the energy won’t increase.

Having a 1D operator that satisfies SBP with respect to a diagonal scalar product
Σ = (σij) = δijσi, one can construct a 3D operator by simply applying the 1D difference
operator to each direction. The resulting 3D operator satisfies SBP with respect to a
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diagonal scalar product

(u, v)Σ = hxhyhz
∑

ijk

σijkuijk · vijk,

with σijk = σiσjσk. Defining a 3D difference operator by just applying this one-
dimensional one to each direction will satisfy SBP with respect to the trivial 3D scalar
product.

Then, for some boundary conditions, the 3D semidiscrete equation for the 3D advec-
tion may be written as:

u̇ijk = ΛlDuijk +
δi,0T

hσx00
(gx − ux0) +

δj,0T

hσy00
(gz − uy0) +

δk,0T

hσz00
(gz − uz0). (A.5)

Now we consider the system of Equationsu̇ = Aµ∂µu = Ax∂xu+Ay∂yu, whereu is
a vector-valued function and,Ax, andAy are symmetric and constant coefficient matrices.

The 3D scalar product is defined as the product of the scalar product on each direction,

E = 〈u, v〉 = hxhy
∑

ij(uij , vij)σ(x)iσy(j), (A.6)

where (u, v) is the Euclidean scalar product of two vectors. Then the semidiscrete equation
with a SAT penalty term is:

u̇ij = Aµ∂µuij −
T

hyσ(y)j=0
ui0

and the time derivative of the energy of the system is then:

Ė = hx
∑

iσ(x)i[(ui,0, (A
µ − 2T )ui,0]

With positive speed, we can takeT = Λ + δ. Forgi = 0, we haveĖ = (Aµ − 2T )u2
i,0,

thus showing that the energy won’t increase.

A.1.1 Second Derivatives

The first derivative operator works as in the 1D case, except at boundary edges and cor-
ners. SBP applied to the energy method will give a specific solution for the penalty term
at the boundaries, as this depends on the space of the equations, I will give the wave equa-
tion solution in the next section. The second derivative is the same except that there is the
question of the value of

D2 = H−1(−DT
1 HD1 +BS) = H−1(−A+BS) (A.7)

for mixed coordinates (D2 = Dij for i 6= j). These terms are derived in Section [3.1.1].

First I will introduce the terminology:

• Si is the approximation of the first derivative operator at the boundaries. "S" is for



205 A.1 Well-posed boundary terms with SAT

stencil.

• Qi +Qti = Bi = diag(−1, 0..., 1).

• Aij = DT
i HDj represents the part of the second derivative that is the square of the

of the first derivative without a penalty term.

• D+i = H−1(Qi +Ri) is the upwind first derivative term.

• D−i = H−1(Qi −Ri) is the downwind first derivative term.

• DIi = H−1Ri is the artificial dissipation term (R = RT ).

With this notation we use the second semidiscrete derivatives:

D
(u)
ii =

1

2
(D+iD−i +D−iD+i) = H−1(−DT

i HDi +BiDi) −DITi HDIi (A.8)

D
(u)
ij =

1

2
(DiDj +DjDi) =

1

4
[(D+iD−j +D−iD+j) + (D+jD−i +D−jD+i)]

=
1

4
H−1[(Qi +Ri)

T (Qj −Rj) + (Qi −Ri)
T (Qj +Rj)

+ (Qj +Rj)
T (Qi −Ri) + (Qj −Rj)

T (Qi +Ri)]

=
1

2
H−1[(QTi Qj +QTj Qi) − (RTi Rj +RTj Ri)]

=
1

2
[(Aij +Aji) − (DITi HDIj +DITj HDIi)]

for the unmixed and mixed second derivatives, respectively.

A.1.2 Wave Equation in Flat Space

Here, as an instructive example, I will show the derivation of simultaneous approximation
penatly terms (SAT) to enforce conservation of energy to ensure well posedness with
artificial outer boundaries. The energy method applied to the wave equation in flat space
utt = uxx + uyy + uzz gives:

d

dt

(
‖ut‖2 + ‖ux‖2 + ‖uy‖2 + ‖uz‖2

)
= 2(utux |x=Nx

x=0 +utuy |y=Ny

y=0 +utuz |z=Nz
z=0 )

(A.9)
If we use the boundary conditions (assuming allg0 andgN are zero) then for the bound-
aries ofi = 0, 1 . . . , N − 1, N

[δi,0(α+D)x + δj,0(α+D)y + δk,0(α+D)z]uijk = −ut(0) , (A.10)

[δi,N (β +D)x + δj,N (β +D)y + δk,N(β +D)z]uijk = ut(N) .



Chapter A: Appendix 206

with α ≤ 0 andβ ≥ 0 so that an energy estimate is possible. The energy method leads to
leads to:

d

dt

(
‖ut‖2 + ‖ux‖2 + ‖uy‖2 + ‖uz‖2

)
= (A.11)

(〈ut, utt〉 + 〈utt, ut〉) + (〈ui, uit〉 + 〈uit, ui〉) =

(〈ut, uii〉 + 〈uii, ut〉) + (〈uj , ujt〉 + 〈ujt, uj〉)

By applying the SBP condition〈u,Dv〉 + 〈v,Du〉 = (uv) |ba this is:

Ė = 2utui |xi=Ni

xi=0 (A.12)

I do the same to the semidiscrete approximation of the wave equation in flat space

vtt = H−1
xi

(−Aii +BSi)v + τ0H
−1E0(α0vt + β0Siv) + τNH

−1EN (αNvt + βNSiv)
(A.13)

where are vectors of lengthN andET0 = (1, 0, . . . , 0) andETN = (0, 0, . . . , 1). Applying
the energy method I obtain

Ė = 2utui |
xi=xNi
xi=0 +2τ0(α0u

T
t E0ut+β0u

T
t E0Siu)+2τN (αNu

T
t ENut+βNu

T
t ENSiu)

(A.14)
In order to control the energy growth I must set theuTt Siu terms to zero, thusτ0β0 = 1
andτNβN = −1. I also wantτ0(α0L+β0) = 1 andτN (αNR+βN ) = −1 for boundary
conditionsut = δ0,iLui + δN,iRui so for the wave equation I get

vtt = H−1
xi

(−Aii +BSi)v +H−1
xi
E0Siv −H−1

xi
ENSiv (A.15)

To prescribe boundary conditions at the corners and edges, you do not need a normal
vector except for the spacing coefficient (dx2/(dx2 + dy2 + dz2) ). One can just look at
the contribution to the semidiscrete energy above from the edges (i.e. (x,y,z)=(0,0,z)) or
corners (i.e. (x,y,z)=(0,0,N)).

A.1.3 Wave Equation in General

The energy method applied to the wave equationutt = (
−γij
γtt

∂i∂j − 2
γit

γtt
∂i∂t)u gives:

d

dt

(
‖ut‖2 + ‖−γ

ij

γtt
uiuj‖

)
= (A.16)

(〈ut, utt〉 + 〈utt, ut〉) + −γ
ij

γtt
(〈ui, ujt〉 + 〈uit, uj〉) =

−γ
ij

γtt
(〈ut, uij〉 + 〈uij , ut〉 + 〈ui, ujt〉 + 〈uit, uj〉) − 2

γit

γtt
(〈ut, uit〉 + 〈uit, ut〉)
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By applying the SBP condition〈u,Dv〉 + 〈v,Du〉 = (uv) |ba this is:

γij

γtt
[(u⊤t Dju) |xi=Ni

xi=0 +(u⊤t Diu) |xj=Nj

xj=0 ] + 2
γit

γtt
u2
t |xi=Ni
xi=0 = (A.17)

−2[
γij

γtt
(utuj) |xi=Ni

xi=0 +
γit

γtt
(u2
t ) |xi=Ni

xi=0 ]

Then applying the boundary conditionsut = δ0,xi
αiui + δN,xi

βiui

− 2[(γijβiuiuj |xi=Ni
+γitβiuiut |xi=Ni

) (A.18)

− (γijαiuiuj |xi=0 +γitαiuiut |xi=0)]

= −2[(βiu
2
t − γitu2

t ) |xi=Ni
−(αiu

2
t − γitu2

t ) |xi=0]

So:
d

dt
ξ = 2[ENi

(βiu
T
t ut − γituTt ut) − E0(αiu

T
t ut − γituTt ut)] (A.19)

If we start, again, with our wave equation and add the penaltyterms before we derive the
time derivative of the energy:

vtt = −γ
ij

γtt
H−1(−Aij +BSi)v − 2

γit

γtt
H−1Qivt (A.20)

+ τ0H
−1E0(α0vt + β0Siv) + τNi

H−1ENi
(αNi

vt + βNi
Siv)

We again calculate the time derivative of the energy norm:

d

dt

(
‖ut‖2 + ‖−γ

ij

γtt
uiuj‖

)
= (〈ut, utt〉+〈utt, ut〉)−

γij

γtt
(〈ui, ujt〉+〈uit, uj〉) (A.21)

And apply summation by parts in the integration:

− γij

γtt
[(v⊤t Sjv) |xi=Ni

xi=0 +(v⊤t Siv) |
xj=Nj

xj=0 ] − 2
γit

γtt
v⊤t vt |xi=Ni

xi=0 (A.22)

+ 2τ0i
α0i

v⊤t E0i
vt + 2τ0i

β0i
v⊤t E0i

Siv

+ 2τNi
αNi

v⊤t ENi
vt + 2τNi

βNi
v⊤t ENi

Siv

= 2(τNi
αNi

− γit

γtt
)v⊤t ENi

vt + 2(τ0i
α0i

+
γit

γtt
)v⊤t E0i

vt

+ 2(τNi
βNi

− γij

γtt
)v⊤t ENi

Siv + 2(τ0i
β0i

+
γij

γtt
)v⊤t E0i

Siv

In order to control the sign of the energy growth we need to setthev⊤t ENi
Siv terms to

zero. We get:τ0β0 = −γ
ij

γtt
andτNβN =

γij

γtt
. So:

d

dt

(
‖ut‖2 + ‖γ

ij

γtt
uiuj‖

)
= 2(τNi

αNi
− γit

γtt
)v⊤t ENi

vt + 2(τ0i
α0i

+
γit

γtt
)v⊤t E0i

vt

(A.23)
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= −2(βNi

γit

γtt
− αNi

γij

γtt
)β−1
Ni
v⊤t ENi

vt + 2(β0i

γit

γtt
− α0i

γij

γtt
)β−1

0i
v⊤t E0i

vt

Given the maximally dissapative conditions:βNi
γit−αNi

γij ≤ 0 andβ0i
γit−α0i

γij ≥ 0
we know thatβNi

> 0 andβ0i
< 0

pt = −γ
it

γtt
H−1Qivt −

γij

γtt
H−1(A+ (E0 − EN )S)v (A.24)

− γij

γttβ0i

H−1E0(α0i
vt + β0i

Siv) +
γij

γttβNi

H−1ENi
(αNi

vt + βNi
Siv)

If we setα = −β

pt = −γ
it

γtt
Di+p− (γij − γitγjt

γtt
)H−1Aijv ±

2γij

hγtt
[(1 − γitγjt

γtt
+ γtt − γit

γtt
)Di+v − p]

(A.25)
To prescribe boundary conditions at the corners and edges, you do not need a normal
vector except for the spacing coefficient (i.e.dx2/(dx2 + dy2 + dz2) ). You can just look
at the contribution to the semidiscrete energy above from the edges (i.e. (x,y,z)=(0,0,z))
or corners (i.e. (x,y,z)=(0,0,N)).

A.2 Proper Boundaries for Harmonic

Conditions for spherical waves in a cartesian grid:

(∂t − ∂x)
[
r2 (gµν − gµν0 )

]
= 0 (A.26)

Right side subtracted in penalty terms:

∂tQ
µν = −

(
gij − gitgjt

gtt

)
D+D−g

µν − git

gtt
D−iQ

µν + S̃ (A.27)

+ τ0i
H−1E0i

(α0i
gµνt + β0i

Sig
µν + γ0i

gµν − e0i
g0)

+ τNi
H−1ENi

(αNi
gµνt + βNi

Sig
µν + γNi

gµν − eNi
gN )

WhereENi
is zero everywhere except the upperxi boundary, andE0i

is zero everywhere
except the lowerxi boundary.
We calculate the time derivative of the energy norm:

d

dt

(
‖ut‖2 + ‖−γ

ij

γtt
uiuj‖

)
= (〈ut, utt〉+〈utt, ut〉)−

γij

γtt
(〈ui, ujt〉+〈uit, uj〉) (A.28)

And apply summation by parts in the integration:

Ė = 2
γij

γtt
(v⊤t Sjv) |xi=Ni

xi=0 −2
γit

γtt
(v⊤t vt) |xi=Ni

xi=0 (A.29)

+ 2τ0i
α0i

v⊤t E0i
vt + 2τ0i

β0i
v⊤t E0i

Siv + 2τ0i
γ0i
v⊤t E0i

v − 2τ0i
e0i
v⊤t E0i

g0

+ 2τNi
αNi

v⊤t ENi
vt + 2τNi

βNi
v⊤t ENi

Siv + 2τNi
γNi

v⊤t ENi
v − 2τNi

eNi
v⊤t ENi

gN
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Which simplifies to:

Ė = 2(τNi
αNi

− γit

γtt
)v⊤t ENi

vt + 2(τ0i
α0i

+
γit

γtt
)v⊤t E0i

vt (A.30)

+ 2(τNi
βNi

− γij

γtt
)v⊤t ENi

Siv + 2(τ0i
β0i

+
γij

γtt
)v⊤t E0i

Siv

+ 2(τNi
γNi

)v⊤t ENi
v + 2(τ0i

γ0i
)v⊤t E0i

v

+ 2(τNi
eNi

)v⊤t ENi
g0 + 2(τ0i

e0i
)v⊤t E0i

g0

In order to control the sign of the energy growth we need to setthev⊤t ENi
Siv terms

to zero. We get:τ0β0 = −γ
ij

γtt
andτNβN =

γij

γtt
.

So:

Ė = −2(βNi

γit

γtt
− αNi

γij

γtt
)β−1
Ni
v⊤t ENi

vt (A.31)

+ 2(β0i

γit

γtt
− α0i

γij

γtt
)β−1

0i
v⊤t E0i

vt

+ 2(τNi
γNi

)v⊤t ENi
v + 2(τ0i

γ0i
)v⊤t E0i

v

+ 2(τNi
eNi

)v⊤t ENi
g0 + 2(τ0i

e0i
)v⊤t E0i

g0

Given the maximally dissipative conditions:βNi
γit − αNi

γij ≤ 0 and β0i
γit −

α0i
γij ≥ 0 we know thatβNi

> 0 andβ0i
< 0.

For the harmonic system the interior is:

∂tQ
µν =

γit

γtt
Di+Q

µν − (γij +
γitγjt

γtt
)H−1Aijγ

µν (A.32)

The full evolution equation with the Boundaries is then

∂tQ
µν = −γ

it

γtt
Di+Q

µν − (γij +
γitγjt

γtt
)H−1(Aij + (E0 − EN )Si)γ

µν(A.33)

+
2γij

γttβ0
H−1E0i

[(1 +
γit

γtt
)Di+γ

µν − Qµν

γtt
+

2x

r2
(γµν − g0)]

+
2γij

γttβN
H−1ENi

[(1 − γit

γtt
)Di+γ

µν +
Qµν

γtt
+

2x

r2
(γµν − gN )]

Whereγµν ≡ √−ggµν andQµν = gtα∂αγ
µν . Thus we can show that the energy growth

of the system is bounded.
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A.3 Constraint Preserving Boundary Conditions

The constraint equations

Cµ = −∂tγµt − ∂xγ
µx − ∂yγ

µy − ∂zγ
µz − S̃µ (A.34)

are used to set the conditions for the four valuesγ0µ. We plug these into Sommerfeld
type conditions chosen to be (for the upper bound):

(
∂x + ∂t +

1

r

)(
γAB − γAB0

)
= 0 (A.35)

giving us the conditions for the threeγAB.
(
∂x + ∂t +

1

r

)(
γtA − γxa − γtA0 + γxA0

)
= 0 (A.36)

giving us the twoγxA since we knowγtA from the constraints.
(
∂x + ∂t +

1

r

)(
γtt − 2γxt + γxx − γtt0 + 2γxt0 − γxx0

)
= 0 (A.37)

Which finally gives usγxx since we knowγtt andγxt from the constraints. Where AB
are the directions prependicular to the boundaries and x is the direction outward of the
boundary face. There are a number of ways to vary this, which could be experimented
with.

This give the 10 conditions (at the x=1 boundary):

(∂x + ∂t) γ
00 = ∂xγ

00 − ∂xγ
01 − ∂yγ

02 − ∂zγ
03 − S0

(∂x + ∂t) γ
01 = ∂xγ

01 − ∂xγ
11 − ∂yγ

12 − ∂zγ
13 − S1

(∂x + ∂t) γ
02 = ∂xγ

02 − ∂xγ
12 − ∂yγ

22 − ∂zγ
23 − S2

(∂x + ∂t) γ
03 = ∂xγ

03 − ∂xγ
13 − ∂yγ

23 − ∂zγ
33 − S3

(∂x + ∂t) γ
11 = (∂x + ∂t)

(
2γ01 − γ00

)
−1

r

(
γ11 − 2γ01 + γ00

)
+

(
∂x +

1

r

)(
γ11
0 − 2γ01

0 + γ00
0

)

(∂x + ∂t) γ
12 = (∂x + ∂t)

(
γ02 − γ02

0

)
− 1

r

(
γ12 − γ02

)
+

1

r

(
γ12
0 − γ02

0

)
+ ∂xγ

12
0

(∂x + ∂t) γ
13 = (∂x + ∂t)

(
γ03 − γ03

0

)
− 1

r

(
γ13 − γ03

)
+

1

r

(
γ13
0 − γ03

0

)
+ ∂xγ

13
0

(∂x + ∂t) γ
22 = −1

r

(
γ22 − γ22

0

)
+ ∂xγ

22
0

(∂x + ∂t) γ
23 = −1

r

(
γ23 − γ23

0

)
+ ∂xγ

23
0

(∂x + ∂t) γ
33 = −1

r

(
γ33 − γ33

0

)
+ ∂xγ

33
0
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A.4 On the convergence tests

The effects of the initial transient modes can last for different amounts of time for the
different resolutions. A comparison of theQ+

22 waveforms between the three resolutions
confirms this shift in time – the waveform maxima are seen at slightly different times for
the different resolutions. We attempt to undo this effect bymanually shifting the time-
coordinate of the medium and high resolution runs

t→ t+ δt. (A.38)

The value ofδt is set for the medium and high resolution runs independently, using the
minimization condition

∂

∂(δt)

∫ 170

150
|Q(t → t+ δt) −Qvhigh|2dt = 0. (A.39)

This effectively means aligning in time the peak amplitude of the three runs, att ≈ 160M .
Solving Eq. (A.39) numerically for theQ+

22 waveforms gives

δt0.024 = 0.4756 and δt0.018 = 0.1078. (A.40)

Applying the time-shifting condition Eq. (A.38) to the coarse and medium resolu-
tion data, and inserting the result into Eqs. (4.20)–(4.21) gives convergence rates that are
consistent with the theoretical expectations.

In TableA.1 we report the convergence rates as calculated from Eq.4.20for the time
interval0 ≤ u ≤ 190 (u is the retarded time as defined in Sec.4.1.2) which excludes the
initial burst but contains the rest of the waveform. We see close to fourth-order conver-
gence for theℓ = 2 modesQ+

22 andQ×
21. Theℓ = m = 3 modeQ+

33, on the other hand,
shows second order convergence in phase, which is most likely related to the fact that the
magnitude of this mode is the same size as the finite difference error inQ+

22 and is a factor
of 40 smaller than the magnitude ofQ+

22 itself.

The final kick-velocity magnitude in units ofkm/s is

|v|kick = 263.49, 259.75, and 261.00 (A.41)

for the medium, high and very-high resolutions. This givesρ(|v|kick) = 2.98 which can
be inserted into Eq. (4.21) to obtain a calculated convergence rate of4.32.

A.5 Details on the extraction ofΨ4

The numerical solution of Eqs. (4.29) involves first an interpolation ofΨ4 as calculated
according to Eqs. (4.25) from its values on the Cartesian grid to those onto the extraction
sphere by using fourth-order Lagrange interpolants. Because of the symmetry across the
z = 0 plane the interpolation is effectively done on the upper hemisphere only, thus using
a spherical coordinate system withθ, φ ∈ [0, π/2] × [0, 2π] and applying cell-centered
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Figure A.1: Left panel: Evidence that the conditions for the Peeling theorem are
met also forΨ3, which scales asr−2 when extracted at isotropic radii
r
E

= 30M , 40M , 50M , and60M . This figure should be compared
to the corresponding Fig.4.5. Right panel:The same as the left panel but
for the gauge-invariant quantityQ+

22, which is shown to be constant when
extracted at isotropic radiir

E
= 30M , 40M , 50M , and60M .
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Table A.1: Integrated convergence rates of the Zerilli-Moncrief gauge-invariant vari-
ables providing the dominant contribution in the kick-velocity measure-
ments. As the numbers indicate, we achieve at least third order convergence
both in amplitude and phase. A time-shift as given by Eqs. (A.38)–(A.40)
was made on the raw data to remove the near cancellation of thelowest-order
error terms.

Q Q×
21 Q+

22 Q+
33

r
E
/M amp phase amp phase amp phase
30 4.51 3.95 4.65 4.31 4.32 2.13
40 4.08 3.70 4.61 4.34 4.26 2.62
50 3.83 4.44 4.35 4.76 4.02 2.39

discretization along theθ-direction to avoid the coordinate singularities at the poles on the
sphere.

The angular resolution is chosen so that the spacings∆θ and∆φ are equal and of the
same order as the corresponding Cartesian spacings of the refinement level in which the
largest extraction 2-sphere is located. As an example, for the fiducial finest resolution of
h = 0.024M , the largest extraction radius is atr

E
= 60M and in a region covered by the

second refinement level with spacing∆0.024
rl=2 = 1.536M . To obtain an equivalent spacing

on the 2-sphere, we solve for∆θ and∆φ such that

r
E
∆θ = r

E
∆φ ≈ ∆0.024

rl=2 = 1.536M . (A.42)

The resulting number of grid points isNθ = 56 along theθ-direction andNφ = 224 along
theφ-direction.

After interpolation onto the extraction sphere, we first calculate the time integral of
Ψ4|S2 and afterwards, the surface integral of the absolute squareof the former accord-
ing to Eqs. (4.29). These integrals are both computed using fourth-order schemes. In
particular, for the surface integral, we use Simpson’s rulein the form

∫ xN

x0

dx f(x) ≈ ∆x

[
17

48
f0 +

59

48
f1 +

43

48
f2 +

49

48
f3

+〈fk〉

+
49

48
fN−3 +

43

48
fN−2 +

59

48
fN−1 +

17

48
fN

]
, (A.43)

where〈fk〉 is the sum over allfk with 3 < k < N − 3. The integral overdθdφ is
obtained by computing the tensor product of the RHS of Eqs. (A.43), i.e.,

∫ θN

θ0

dθ

∫ φN

φ0

dφ f(θ, φ) ≈ ∆θ∆φ

Nθ∑

i=0

Nφ∑

j=0

cicj fij ,

(A.44)

where theci, cj are the coefficients in the RHS of Eqs. (A.43).
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The time integral of Eqs. (4.29) is generically calculated by using the fourth-order
Simpson’s rule in such a way that the integral for the time step k uses only past time steps
i with 0 ≤ i ≤ k. Care is required for the very first time steps, for which we have less
than 7 evaluations of the integrand. In this case, we use the 2nd-order accurate trapezoid
rule if N = 1, 3, or 5

∫ xN

x0

dx f(x) ≈ ∆x

[
1

2
f0 + 〈fk〉 +

1

2
fN

]
, (A.45)

or the fourth-order accurate Simpson’s rule

∫ xN

x0

dx f(x) ≈ ∆x

[
1

3
f0 +

4

3
f1

+〈2
3
f2k +

4

3
f2k+1〉 +

1

3
fN

]
, (A.46)

if N = 2, 4 or6. ForN ≥ 7 we simply use Simpson’s rule in the form (A.43). It should be
noted that the use of a higher-order time integration schemeimproves the overall accuracy
in the calculation of the final recoil velocity by more than a factor of 10.

A.6 A comparison of wave-extraction methods

In Fig. 4.5, we have shown thatΨ4 as extracted at different radii correctly scales with
the 1/r falloff as predicted by the peeling theorem. Here, we also check if all other
components of the Weyl tensor exhibit the correctr5−nΨn = const. scaling.

The left panel of Fig.A.1 indeed shows that the scaling property of allΨn behave as
expected. In the course of the same analysis, it is also worthlooking at the waveforms as
calculated by using the gauge-invariant formalism. In particular, we focus on the real part
of theℓ = 2,m = 2 even parity wave modeQ+

22 and check for the correct scaling for the
different extraction radii. The right panel of Fig.A.1 shows thatQ+

22 is constant for all
extraction radii as expected.

As a final remark, we will also compare theh+ andh× as calculated by using the odd
and even master functions in the gauge-invariant formalismaccording to Eq. (4.31) and
the spin-weighted spherical harmonic amplitudes of the Weyl componentΨℓm

4 decom-
posed on the extraction spheres. Using these amplitudes, the metric perturbationsh+, h×
recovered by a double time integral of Eq. (4.27)

h+ − ih× = lim
r→∞

∑

ℓ,m

∫ t

0
dt′
∫ t′

0
dt′′Ψℓm

4 −2Yℓm . (A.47)

The numerical integration of Eq. (A.47) requires knowledge of an integration constant
for the calculation of the second integral to eliminate the linear offset. This constant is
determined by searching for minima in theΨℓm

4 mode and averaging over them. The
resulting value is used as the integration constant. In bothcases, we only consider the
dominant contribution from modeℓ = 2 ,m = 2.
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Figure A.2: Comparison of the two polarization amplitudesh+ (upper graph) andh×
(lower graph) as computed withΨ4 (continuous black line) or with the
gauge invariant quantitiesQ+

ℓm (dashed red line). Note the two polariza-
tions are computed using the lowest (and dominant) multipoleℓ = 2, m =
2 and are extracted atr

E
= 50M .
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Figure A.3: Left panel: Coordinate trajectories for one of the black holes for ther0
compared with similar models where the initial linear momenta have been
changed by±3% in order to modify the eccentricity of the inspiral.Right
panel:Recoil velocity for ther0 case is compared with similar models for
which the initial eccentricity has been increased by addingand subtracting
3% of the initial linear momentum of the black holes relativeto the r0
values. The effect of increased eccentricity in the final merger is to increase
the size of the kick, by about 4% in both cases.

A.7 On the influence of orbital eccentricity

Another source of potential error in calculating a “physical” kick comes from the choice
of initial data parameters. Our evolutions begin from fairly close separations, comprising
at most the last 2-3 orbits. As such, parameters for quasi-circular orbits determined by
the effective potential method, give only approximations to the true orbital parameters for
black holes that have spiraled in from infinity, and it is known that the method produces
a non-trivial residual eccentricity for initial data at close separation. This eccentricity can
have significant effects on the orbital trajectories beforemerger, and a potential influence
on the calculated recoil. To test this we have evolved two modified r0 models, one in
which the initial linear momenta of the black holes is3% larger than that specified in Ta-
ble4.1, and another in which the linear momenta are3% smaller. The modified momenta
have the effect of changing the orbital energy of the bodies from the minima determined
by the effective potential method, introducing an additional eccentricity to the evolution.
The resulting black hole trajectories and kick determinations are shown respectively in
Fig. A.3. We see that although the level of applied eccentricity is large, and in fact much
larger than the expected eccentricity due to the intrinsic inaccuracy of the effective poten-
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tial method, it modifies the recoil by only about10 km/s, that is, 4%. Further, in both
the high and low energy cases, the recoil is increased over the fiducialr0 case, suggesting
that increased eccentricity generically leads to a slightly larger recoil.

A.8 Sensitivity curves

For convenience, we report below the sensitivity curves used to compute the SNRs that
are often difficult to collect from the literature. For LISA we we use the same noise curve
as for the LISA Mock Data Challenge 3 [263] as implemented by Trias and Sintes, and
made available by the LISA Parameter Estimation Task Force [264]. The noise curve for
advanced Virgo can be found in tabulated form in Ref. [220].
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