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Abstract

With ground-based gravitational wave detectors at desgsisvity, and a space-
based detector in planning stages, the need for accuratiéagianal wave templates for
signal recognition by detector pipelines has become amupggeblem. With that in mind,
and the fact that binary black hole inspirals and mergersharstrongest potential source
for gravitational wave signals for online detectors, myessh has focused on improving
the accuracy and well-posedness of numerical simulatamspn the generation of grav-
itational waveforms from numerical simulations both foted#tor template generation and
for astrophysical predictions.

For simulations of highly dynamical relativistic vacuumesp-times | derived accu-
rate and well-posed formulations of the Einstein equatimnsiumerical evolutions. |
herein propose a set of well-posed, constraint-presevingndary conditions for artifi-
cial boundaries for a first order in time and second order acspgeneralized harmonic’
formulation of the Einstein equations. | tested these dardi both for black hole space-
times and for a series of robust stability tests, and shotithiege conditions reduce noise,
reduce constraint violation, and increase stability fdatieistic simulations. Addition-
ally, | propose novel, well-posed, constraint-presentiogndary conditions for the more
commonly used BSSN evolution system for standdrd-log” and Gamma-driver gauge
conditions.

| carried out numerical evolutions of symmetric and asymimetinary black hole

mergers in large numbers to explore the parameter spaceari/ilack hole inspirals and
derive a statistical and phenomenological view of the gafsjualities of binary merger
remnants. | ran binary black hole inspiral simulations ggioth quasi-circular and post-
Newtonian derived initial orbital binary inspiral parareet, and “puncture” initial data,
and extracted physics from a number of initial data sequeimcerder to establish bounds
on phenomenological formulae for the final spin and recddeigy of merged black holes
from arbitrary initial data parameters.

With the data from those parameter studies we focus on gtarigl-wave emission
to quantify how much spin effects contribute to the sigmahbise ratio and to the relative
event rates for the representative ranges in masses ardadste show that equal-spin
binaries with maximum spin aligned with the orbital angul@@mentum are more than
“three times as loud” as the corresponding binaries wititraigned spins. Finally, we
derive a simple expression for the energy radiated in grwital waves and find that the
binaries have efficiencies,.q /M betweerB.6% and10%.

Finally, | present an analytical inspiral-merger-ringdowravitational waveforms
from black-hole (BH) binaries with non-precessing spinsiiatching a post-Newtonian
description of the inspiral to our numerical calculatiomsg obtain a waveform family
with a conveniently small number of physical parametersesehwaveforms will allow
us to detect a larger parameter space of BH binary coalescémexplore various sci-
entific questions related to GW astronomy, and could dramalftiimprove the expected
detection rates of GW detectors.
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Zusammenfassung

Da heutige erdgebundene GravitationswellendetektorenDiesignsensitivitat erre-
icht haben und weltraumgesttitzte Detektoren in der Plasphrase sind, ist es notwendig,
genaue Gravitationswellenschablonen zwecks Signaledcenin den Detektor-Pipelines
zur Verfigung zu haben. Mit dieser Problemstellung im Hiugf, und der Tatsache,
dal bindre Schwarzlochverschmelzungsprozesse potefidedtarksten Quellen gravi-
tativer Strahlung fiir derzeit operierende Detektorentdlrshat sich meine Forschung
dadrauf konzentriert, die Genauigkeit und korrekte Stgjlnumerischer Simulationen zu
verbessern, sowie gravitative Wellenformen durch nurokesSimulationen fir Detek-
torschablonenerzeugung und astrophysikalische Vorpensau berechnen.

Fur Simulationen hochdynamischer, relativistischer Waktaumzeiten habe ich
genaue und korrekt gestellte Formulierungen der Eindwtigingen fir numerische
Evolutionen hergeleitet. Hierbei entwerfe ich einen Satmrékt gestellter, zwangs-
bedingungserfillender Randbedingungen fur kinstlichedBéund fur eine “general-
isierte harmonische” Formulierung der Einsteingleicremgrster Ordnung in der Zeit
und zweiter Ordung im Raum. Verschiedene Tests an Schwarzomzeiten und Sta-
bilitatstests zeigen, dal3 diese Bedingungen numerischescRen und Verletzungen der
Zwangsbedingungen reduzieren, sowie die Stabilitat ennoBesweiteren entwickele ich
neue korrekt gestellte, zwangbedingungserflillende Redidgungen fir das weitverbre-
itete BSSN Evolutionssystem mit der “1+log” Gamma-TreiB@hbedingung.

Ich habe eine grofe Anzahl numerischer Evolutionen synisob@r und asym-
metrischer Schwarzlochverschmelzungen durchgefuhrtdemParameterraum zu un-
tersuchen, und um eine statistische und phanomenologidcisecht physikalischer
GroRRen des verschmolzenen schwarzen Loches zu erhaltdn.halie Simulationen
von Binarsystemen mit quasi-zirkularen und post-Newtnigbgeleiteten orbitalen
Punktions-Anfangsparametern durchgefihrt, und habegwhénologische Formeln fir
den finalen Spin und Rickstol3 des verschmolzenen schwaomdes fir beliebige An-
fangsdaten bestimmt.

Desweiteren habe ich mich mit den Daten dieser Parameaf&stauf deren grav-
itative Wellenemission konzentriert, um den Effekt vonrSpuf das Signal-zu-Rausch
Verhéltnis und relativen Ereignisraten flr verschiederes$én und Detektoren zu bes-
timmen. Ich zeige, dald Bindrsysteme mit gleichem und maxauagerichteten Spin
mehr als dreimal “lauter” sind, als entsprechende Systeihanti-ausgerichtetem Spin.
Zudem leite ich einen einfachen Ausdruck fur die abgedeaBhergie in Gravitation-
swellen her, und zeige, dal} eine Effizienz zwiscB&% und 10% in E..q/M erreicht
werden kann.

Zuletzt prasentiere ich eine Familie analytischer undstatidiger Wellenformen fur
Binarsysteme mit nicht-prazedierendem Spin, die mit eifémeichend kleinen Satz
an freien physikalischen Parametern auskommt. Um diesreicken, habe ich post-
Newtonische Wellenformen an numerisch berechnete angep&dese Wellenformen
werden es ermdglichen, einen grof3en Bereich des SchwhrBla@meterraums aufzus-
puhren, verschiedene Aspekte der Gravitationswellemra@tnie zu beantworten, und die
Detektionsraten erheblich zu verbessern.

Schlagworte: Randbedingungen, SchwarzlochverschmgdzyriNumerisches Relitivitat
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Chapter 1

Introduction

Every time we walk along a beach some ancient urge disturls® tisat we
find ourselves shedding shoes and garments or scavenginggaseaweed
and whitened timbers like the homesick refugees of a long wamMostly

the animals understand their roles, but man, by compariseems troubled
by a message that, it is often said, he cannot quite rememblasiogotten
wrong ... Bereft of instinct, he must search continually fioganings. ..
Man was a reader before he became a writer, a reader of whaei@ige

once called the mighty alphabet of the universe.

Loren Eiseley

In 1915 Einstein’s theory of general relativity proposeattihe geometry of spacetime
could be as dynamic and informative as the electromagnetierse. He proposed that
matter and energy define the structure of the surroundingesipge, and that that struc-
ture, in turn, effects the motion of the bodies within it. Tatgective of all work accom-
plished here is for the improvement of computational modeld modeling techniques
for general relativistic simulations. These simulations @elevant for the prediction of
gravitational wave (GW) signals to be used for the improveinoé GW signal detection
rates and accuracy of parameter estimation by gravitdtivage observatories. The use
of such numerically generated signals is essential for sbebrvatories to be able to dis-
tinguish GW signals, and such observations would providerdinely new spectrum of
observation for understanding the dynamics of our Universe

Optical, radio, and x-ray astronomy have provided us withnalant evidence that
many galaxies contain massive black holes in their centralen These nuclear black
holes have a profound effect on the formation, dynamics, emite history of the sur-
rounding galaxy. There is some evidence that the formatf@such black hole popula-
tions can be described by a multistage process of binaryralsmperger, and accretion.
Thus, the detection and analysis of gravitational wavesdyred by such events would
be the first detailed description and the first direct evidewsfcsuch processes, and would
give new insight into the formation of all galaxies— our owcluded.

The measurement and understanding of gravitational wawas éntirely new regime
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of astronomical observation. Studying this new regime egtivey new information about
the behavior, structure, and history of spacetime, as wddeing one of the fist direct non-
local tests of our theories with regard the physical forcgrafvity and the dynamics of
the fabric of spacetime.

This dissertation is concerned with the derivation and enmntation of a well-posed
numerical treatment of the Einstein equations for genetativity in full 3+1 dimensions
on a finite discrete domain of evolution. | will discuss the ©0$ these codes for the evo-
lution of binary black hole (BBH) spacetimes and the expgioraof the parameter space
for such constructions. | will also discuss the extractibnetevant physical information
(such as gravitational waves, spins, and recoil velogifiesn those simulations, and the
analysis of those results for use in gravitational waveate and in generating astro-
physical predictions for the behaviour of merged black sidmaries. Much of the work
discussed herein has been collaborative work with otherarekers at the Max-Planck
Institute for gravitational physics. Collaborators wié bredited in the relevant chapters.

| will first spend the next chapter introducing the backgmbumotivations, and com-
putational and mathematical methods required for the géinarof numerical relativity
simulations and analysis. My thesis covers almost a globx@bes of the stages required
to generate a well-posed numerical simulation and of théysisaof the resultant data
required to provide useful information to gravitationalmedGW) and astrophysics com-
munities:

e In Chapter 2] | describe the physics, mathematics, and computationghaode
and background required to understand the simulations esehrch done for this
thesis. | start by explaining the decomposition of the Eimsequations for use in
numerical simulations, follow with the derivation and dpgtion of initial data for
such simulations, and then discuss the numerical methagsree to evolve said
data forward in time. | explain the different methods useeéxtract gravitational
waveforms and black horizon properties. | explain how wev@roumerical and
physical accuracy and stability for our simulations, antbfo with a discussion of
the specific qualities of the codes used in this these.

e In Chapter B] | describe the derivation, implementation and testingved hew
kinds of boundary conditions for two different kinds of evtdbn systems common
in numerical relativity. These new methods are designethfydve the numerical
and physical accuracy and stability of numerical simutatiavith truncated evolu-
tion domains by artificial outer boundaries. | prove theitlyp@sedness, accuracy
and stability and show a series of tests showing this imgr@erformance against
standard methods for the Harmonic formulation of the Eindiguations, and de-
rive constraint preserving conditions for the BSSN systemaitvare well-posed in
theconformally flat constant coeeficient limit.

e In Chapter 8] | characterize phenomenological formulae for the préalicof the
final spin and recoil velocity of merged binary black holesnir arbitrary initial
parameters derived from data extracted from our numericallations. This work
is the result of the fitting physical knowledge and assunmgtito data obtained
from an extensive study of the parameter space of black hiodgibs by sequences



of numerical simulations performed on a variety of initiata parameters. Quite
surprisingly, these relations highlight a nonlinear bétxawnot predicted by the PN
estimates, and can be readily employed in astrophysicdieston the evolution of
binary black holes in massive galaxies.

e In Chapter b] | will discuss the uses of gravitational waveforms exteacfrom nu-
merical simulations for use in gravitational wave detectata analysis pipelines.
Using the previous chapter’'s parameter studies | explove mach spin effects
contribute to the signal-to-noise ratio and to event ratesafrepresentative range
of masses and detectors. | also present an analytical ahsparger-ringdown grav-
itational waveform for black hole binaries with non-presiag spins by matching
a post-Newtonian description of the inspiral to numeriadtalations to obtain a
generic waveform with a conveniently small number of pariznse

| follow with a discussion of the outlook for the numerical tineds discussed and the
potential extensions of the work discussed. | will conclwdéh a summary of the work
done in this thesis and an analysis of the results showniellidoy Appendices to discuss
technical details which do not suit the main body of the text.



Chapter 1: Introduction




Chapter 2

Background

We do not know the past in chronological sequence. It may beéetient to
lay it out anesthetized on the table with dates pasted on duedethere, but
what we know we know by ripples and spirals eddying out fromnasfrom
our own time.

Ezra Pound

The simulation of general relativistic spacetimes requitee explanation of back-
ground for both the physics motivations, experimental ciibjes, theoretical and mathe-
matical challenges, and numerical/computational requergs, as well as the details of
implementation used for the research in this thesis. Theareh in this thesis deals with
both the details of the mathematical and computational austlemployed to make nu-
merical simulation of the Einstein equations possible,rttethods for the extraction of
physical information from simulation data, as well as the o$ results of such simu-
lations for astrophysical predictions, for the productairwaveforms for use in gravita-
tional wave detector pipelines, and to establish the daédityy and accuracy of parameter
estimation of gravitational waveforms by said detectorsusll need to give background
of both astrophysical and computational nature in ordekpieén the results described in
the later chapters.

In this section | will try to highlight the most important fodations of the methods
and results described in this thesis. | will first explain giogl theory and the relevance of
gravitational waves in general relativity, astrophysarsd cosmology. | will explain why
numerical relativity is necessary to describe and pretietgravitational waves resultant
from massive astrophysical events. | will then follow withdascription of the steps
necessary for the creation of a numerical relativity sirtiotaand a description of the
methods and code used for the simulations in this thesiss rElgjuires an elaboration of
the decomposition of the Einstein equations, the choicenofdinates, the methods for
choosing initial data, and the numerical methods emplogedidcretize space and time
and integrate on those discrete grids. | will then explaiw lgpavitational waveforms
and black hole horizon data is obtained from simulationg] laow we prove physical
accuracy. | then explain the importance of boundary camusti and discuss the details of

5
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Figure 2.1: The effect of gravitational waves on a ring of particles. Wawe propaga-
tion is perpendicular to the ring. The top row shows the ¢féé¢he wave
+ polarized, while the bottom row shows the effectopolarization.

3n/2 2m

the codes used for this research. | will conclude the chaptbran outline of the thesis,
which should make clear how the background given herein@tpphe material of the
thesis to follow.

2.1 General Relativity and Gravitational Waves

Einstein’s theory of gravitation, general relativity (GR$serts that gravity is the result of
curvature in spacetime. This curvature is determined byrtter and energy distribution
in that spacetime. This coaction between matter and cuevéulescribed by the Einstein
Equations:

G = 81Ty, (2.1)

This equation gives ten nonlinear partial differential @ipns (PDE) to describe the full 4
dimensional spacetime metric and matter fields. Wiigrerepresents the Einstein tensor
andT,, is the stress energy tensor for the matter in the spacetimthid dissertation |
will discuss only black hole, and perturbed black hole spams. Thus we limit our
focus to the general relativistic prediction for systemataming only black holes. We
can then set the matter terffi,,, to be everywhere zero. In other words, we treat here
only vacuum problems. However, many of the methods deriezd {CN and boundary
conditions) may be applied to matter problems, as well.

Even with this vacuum simplification, however, few analgtisolutions are known to

1
— ~guwR=0 (2.2)

G = R 5

for realistic astrophysical spacetimes. Hétg, is the Ricci curvature tensoR is the
scalar curvature, angl,,, is the metric tensor for our spacetime of interest.

Einstein’s motives for developing GR were mainly theomdti@t the time there were
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no strong observational reasons to abandon Newtoniantgrésfill, today, evidence of
some predictions of GR have only been observed indirectigrdfore, the study of weak
gravitational fields is an extremely important test of E@igs theory. In such a weak
field regime we may say that such a region corresponds to & riksdirspacetime. Thus,
we may say that such a spacetime has coordinates such timag¢thie tensor is defined as
some finite deviation from Minkowski spacetime

G = Moy + hoy,s |hyu| < 1. (2.3)

Working as if we have this flat spacetime with a tensor figd we can derive linearized
filed equations in GR

Q 1 7 le” 7,
O Oubue — (aaa Py + 10 aﬁhaﬁ> = 8T, (2.4)

whereh,,, = hu, — $n,h andh = n#hy, If we make a gauge transformation to the
Lorentz gauge we may simplify the field equations(i6,, = 1677, where(d :=
g’V ,V, is the flat space d’Alembertian operator. In flat vacuum sjiaeewe obtain

Ohy = (—0f + V*)hy, = 0. (2.5)

This gives us a wave equation for a spacetime perturbatiopagating at the speed of
light transverse to the direction of propagation. Thus, Hiestein field equations tell
us that if masses accelerate asymmetrically around in a&8peg the curvature of that
spacetime will warp to reflect the motions of those objects.

In the same way that electromagnetic radiation accompauesleration of electric
charges, gravitational radiation accompanies quadrupglzeleration of any massive ob-
jects. In highly dynamical spacetimes, cross-polarizaddverse quadrupolar ripples in
spacetime will radiate out longitudinally from this systegiving a metric perturbation

hij = hy(ey)ij — hx(ex)ij (2.6)

for the spatial part where, . are basis tensors in the transverse traceless (TT) gauge.
These ripples are gravitational waves.

The strongest gravitational waves are generated by aatielgrsystems with the
largest gravitational fields7//R. Potential sources of strong gravitational waves are
binary systems of massive compact objects such as black lbolaeutron stars. The
orbital motion of the two massive objects in a quasi-Keplerorbit will produce gravi-
tational waves. These gravitational waves propagate adtatthe speed of light and a
distant observer will see that the distances between abyetitoscillate as these waves
pass. Any gravitational waves seen from earth will never bhehmmore than a fractional
change in sizeK) of 1 in 10-2°, if the predictions of general relativity are accurate. Cur
rently there are many ground based detectors online whield@signed to detect such
passing gravitational waves (LIGO, VIRGO, TAMA, GEO). Thetekction of gravita-
tional waves by these detectors can provide a view into nsgad the universe that other
observational techniques cannot. These are the first @iseies that would observe the
Universe with a spectrum other than the electromagnetiditfdally, the detection of
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gravitational waves could potentially give us the first &agrale direct confirmation of
general relativity, or it could give us the first evidencettha alternate or modified the-
ory of gravity is necessary. But, of course, any importasultefrom gravitational wave
detection hinges on the ability to correctly distinguistd amalyze the detector’s output.

Among the most promising sources for gravitational wavecters are the inspiral
and merger of compact binaries of black holes and neutres. Eaen for these sources,
the signal strength is likely to be much less than the levét@ftetector noise [16]. Thus,
data analysis techniques are required to extract the sigmalthe noise. One technique
which is used for this purpose isatched filteringin which the detector output is cross-
correlated with a catalog of theoretically predicted wawefs. Therefore, chances of
detecting a generic astrophysical signal depend on the stope, and accuracy of the
theoretical signal template bank. The success of grawmitatiwave detectors depends on
accurate theoretical models of compact binary inspiralg. [The work discussed in this
thesis is a small part of the effort required for the detegti@cognition, and analysis of
gravitational waves through the creation of such templaeeforms. The main focus of
this thesis will be the generation of waveforms and astreay predictions for binary
black hole (BBH) inspirals and mergers.

2.2 Numerical Relativity

Far better an approximate answer to the right question, Wiooften vague,
than an exact answer to the wrong question, which can alwaysdde pre-
cise.

John W. Tukey

Binary systems of compact objects are potentially someeofrthst important sources
of gravitational waves. The general Newtonian solutiorhttiinary problem is given by
Keplerian orbits. In general relativity, however, theskitsrwill decay due to the emission
of gravitational radiation. This decay will lead to the imgpand eventual merger of the
two objects. Thus the emitted waves contain important pkyrsical information about
the dynamics of the system. The entire inspiral and mergeoofpact binaries can be
separated into four different phases:

1. The longest being the initial quasi-equilibriumspiral phase. In order to predict
the behaviour of astrophysically relevant events in thigkvigeld regime, we can
approximate GR by perturbative methods called post-Neatoexpansions, which
are expansions in terms of the relative speed of the blagshol

2. Those quasi-circular orbits become unstable at the inostr stable circular orbit
(ISCO), where the inspiral enters thingephase. As we approach the ISCO the
post-Newtonian approximation breaks down. Here a full-GRit#n is required,
but as an exact solution is rarely possible, this is whereraeamical solution be-
comes relevant.

3. After the plunge, the black holes will merge to become glsidistorted black hole.
In this mergerphase, numerical evolutions and phenomenological appiations
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fit to numerical results are the only source of accurate vaaes. This will be the
strongest signal in terms of amplitude.

4. This distorted black hole will ringdown to an equilibriustate. Thisringdown
stage of a merged black hole can be treated with perturbatethods for know
quasinormal ringdown frequencies for given black hole sgor Kerr black hole
solutions [18].

Eventually the black hole will approach an equilibrium sfand can be described by
known spacetime formulations from exact solutions. Howewethe treatment of strong
dynamical fields, such as close inspiral and merger of twokbleoles, we need to treat
the full non-linear Einstein equations. Here fully seliaststent numerical relativity (NR)
simulations become essential.

This becomes more and more relevant today as gravitatiomas detectors approach
final design sensitivity. The ground-based detectors (LIBIRGO, GEO, TAMA) will
produce a data stream that contains noise. Therefore, edeckmowledge of potential
signal waveforms will be needeal priori in order to successfully identify meaningful
signals in the data stream. However, in order for numericatefiorms to be used for
binary black hole signal detection, detector pipelinesuiegmatching against a large
database of template waveforms that cover the full paransptece of binary black hole
attributes— such as spin magnitude and orientation, arahbinass ratio. Numerical sim-
ulations are computationally expensive and time consuminthus becomes necessary
to make extrapolations from numerical results and to dgsheenomenological formulae
for waveform generation and for predictions for other pbgbguantities such as the fi-
nal spin and velocity of the merged black hole. | will discesgh formulae in Chapter
[4]. Finally, I will discuss the use of numerical waveforms fietector data analysis in
Chapter b] where | will discuss detectability, signal-to-noise catpbarameter estimation
for detections and phenomenological waveforms for GW diete¢emplates.

Historically, lacking exact or numerical results from fgkneral relativity, data anal-
ysis methods for such events had to be developed based ambad¢ikte methods called
post-Newtonian expansions. Before numerical relativityld successfully model the bi-
nary black hole problem the GW detector observational conitygould not test or tune
such methods with actual or accurate numerical BH mergeefoawns. Now, the field of
numerical relativity has finally reached a stage where atewsimulations for a range of
astrophysical situations can be provided to the GW data/sissdommunity, and the chal-
lenges of how to extend the capabilities of numerical rellgtisimulations have become
more clear.

Until recently, the challenges of vacuum numerical relgtimade progress toward
waveform production slow, if not occasionally stagnanto3dproblems included the in-
herent difficulty of evolving a singularity in a numericaliyable way, finding appropriate
gauge conditions for stable evolution, and the problemdfmiency and accuracy given
limited resolution and limited computational resourceswidver, beginning with the first
successful orbit of two black holes in a simulation [19]0tigh the first demonstration
of the merger and ringdown [20-23], and finally the discowsrg robust method for sta-
bly evolving any number of orbits through the merger anddown without excising the
black hole within the horizon, stable and accurate numiioaulations are now common
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and rapidly developing, and the field of numerical relagivias become a fast moving and
competitive field just when it has become most urgent for thlel of astrophysics. This
thesis builds on this previous work and works to improve tbeueacy, efficiency, and
scope of these codes.

After decades of research to develop stable, accuratetidaimg, and efficient nu-
merical codes for the evolution of fully general relatiidstynamical spacetimes, the
field of numerical relativity has now reached a stage wheig [tossible to accurately
simulate a range of astrophysical situations and providefgams to the GW data analy-
sis community. In particular, numerical relativists hawawdated BH binaries through 15
orbits, merger and ringdown, and simulations have beewpeed with a variety of initial
configurations, providing important astrophysical infation [24]. Numerical relativists
are now able to provide the GW detector community with adewsaveforms, and for a
wide enough spectrum of initial parameter that we can soovige a phenomenological
formula for generating arbitrary template waveforms faedeor pipelines.

The earliest solutions to the Einstein equations were oactstd by considering the
Einstein equations in their covariant fori.J] and by imposing convenient symmetries.
In numerical relativity we think of the Einstein equatiorssaa initial value problem (IVP).
Initial data is specified on a particular slicing of spacetim a discretised numerical
domain, and then evolution equations are used to move fdrizaneighboring slices.
Thus obtaining a time evolution of our full three-dimensibslice. In order to obtain
such an evolution one first needs to split up the equatiar® in such a way that we
choose three 'spatial’ variables and one 'time’ variablae&hsion along which we step
forward our evolution. This freedom of coordinate choiceelated to the fact that general
relativity is a gauge theory. This gauge freedom gives udrgexiom to split our four
dimensional space as we see fit. | will discuss some commdialyen approaches to this
'3+1" decomposition in the sections that follow, as well asthods for choosing initial
data, numerical methods required for simulations in vacspatetimes, and motivations
for using numerical evolutions.

2.3 Decomposing the Einstein Equations

Divide each difficulty into as many parts as is feasible anckeseary to re-
solve it.

Rene Descartes

In other theories of classical physics we are given a spaeetiackground and our
only task is to determine the time evolution of quantitieshwn that background. As
discussed in the previous two sections, Einstein’s thebgeoeral relativity asserts that
spacetime structure and gravity may be related by desgribimetric,g,,,, on a mani-
fold, M, where the curvature af,, is related to the matter distribution by the Einstein
equation2.1 Written in this form, the Einstein equations are manifestivariant. That
is, there is no way to distinguish spatial coordinates frotim& coordinate. While this
is a natural and sensible form for the equations to take frgmometrical standpoint, for
the sake of gaining a more intuitive view, and for numericalletions, it is necessary to
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Figure 2.2: A spacetime diagram illustrating the definition of the lapsection« and
the shift vector3®.

separate your spatial coordinates from time in order to agvath along which to evolve
some initial data through time. Thus, the first thing thatdsete be done is to reformulate
the Einstein equations asGauchy problemthat is, give a set of initial conditions that
sufficiently determine the future evolution of the system.

Since the Einstein equations give us ten equations and tpémdent components
of the four metricg,,,,, we have the same number of equations as unknowns. Only six of
these ten equations involve second time-derivatives ofrtegic. The other four equa-
tions, thus, are not evolutions equations. We call theseoustraint equations. The four
constraint equations appear as a result of the generaliaogarof the Einstein equations.
This gives us the freedom to apply general coordinate toamsftions to each of the four
coordinates.

If we consider the Einstein equations as a Cauchy problemmayeseparate our ten
equations into a set of four constraint equations and sijugga equations. If these four
constraint equations are satisfied on some initial hyptrsey then the Bianchi identities

V,G" =0 2.7)

guarantee that the evolution equations preserve the eamstron all future spacelike
hypersurfaces during the evolution. This freedom meansthieaEinstein Equations can
be formulated in several ways that will allow us to evolve dyaamics of any relativistic
simulations. | will discuss some of the most common appresadh this freedom in the
sections which follow.

2.3.1 The ADM decomposition

To make the Einstein equations suitable for numericaltmeat, one typically introduces

a foliation of spacetime into three-dimensional hypemtes. The most frequently used
approach is to choose the hypersurfaces to be spacelikeh Veaids to the 3+1 or Cauchy
formulation of general relativity [25, 26]. Here we reforlate the Einstein equations in
such a way that we can describe the time evolution of our mgtrantities by foliating
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our spacetime(M, g;;), by a set of 3-dimensional spacelike Cauchy surfagis,as
parameterized by some time functian,If we let n® be a future-pointing timelike unit
normal vector field to our hypersurfacg,, we can extract our spatial metric from the
spacetime metrigy;;, as a three dimensional Riemannian metric on each

Yij = 9ij + nin;. (2.8)

We then define a vector field fromthat satisfies*V,t = 1. We decomposé” into
normal and tangential parts relativeXp by defining thdapse functiona, and theshift
vector, 5;, respectively

a = —tn; = (n'Vit)t, (2.9)
B =t (2.10)

Thesegauge functionglefine how coordinates move forward in time from sligg, to
Yia¢- Here, the lapse functiony, sets the proper interval as measured by an observer
as we move between hypersurfaces, as illustrated in Figufle §nd the shift functiord;

is the relative velocity of Eulerian observers and the lioesonstant spatial coordinates.
These four parameters,andg;, are a manifestation of the gauge freedom in the Einstein
equations. We can now rewrite the interval as

ds® = —a’dt® + v;;(da’ + B'dt)(da’ + Fdt). (2.11)

Since the Einstein equations are second order, in orderstmgliish between the
intrinsic curvature of the internal geometry of a hyperacef and thextrinsic curvature
associated with the embedding of that hypersurface in theetie for. We must then
introduce something like a time derivative of our metri¢;. Thus, we introduce the
extrinsic curvature tensors;;, to define a time derivative of our spatial metfig on our
hypersurface:;

1
Kij = vaVenp = —§£n%‘j ; (2.12)

whereL,, is the Lie derivative with respect t¢. This extrinsic curvature tensor describes
the change of the normal vector on our hypersurface undedlgatransport, and is a
purely spatial tensor.

The appropriate initial data should, thus, provide defingi for (X,~;;, K;;) on a
hypersurface, wherk is a three-dimensional manifold;; is a Riemannian metric, and
K;; is a symmetric tensor field on. That is, the metricyy;;, depends on how; is
embedded in the full spacetime. We can derive relationsédmtithe curvaturé’ Rﬁjk of

¥ and the spacetime curvatuiéj . and obtain
D;K} — D;K} = Ryn'h}. (2.13)

These are known as theauss-Codacci relationsWe can now use our notions of an
induced metricy;; and extrinsic curvaturés;; and these relations in our analysis of the
Einstein equations. Combining these conditions with treuuan Einstein equations, we
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obtain
atKij =« Rij — 2K21Kjl + KKZJ] — ?Zvja
+ﬂileZ’j + Kiﬁjﬁl + Kﬂ?iﬁl. (2.14)

Here,V; is the spatial covariant derivative oR; andR}j is the associated Ricci tensor
with ~;;. Our set of second order evolution equations for the medribhén completed
by rewriting our definition of extrinsic curvature using thact that in our coordinates,
L= 0;

8{}/1']' = —2aKij + Vzﬂj + Vjﬁz (2.15)

Equations 2.14 and [2.19 give us a complete set of first order evolution equations
given a well-posed initial value problem fgf; and K;;. Following the same procedure,
we also get the constraint equations

R+K*-K;K7 = 0 (2.16)
V(K7 —~47K) = 0. (2.17)

Equation R.1§ is known as theHamiltonian constraintand it constrains the three met-
ric 7,5, while equation 2.17 is the momentum constrainwhich constrains our extrinsic
curvatureK;;. Valid initial data must satisfy these constraints on oitfahslice. If this
condition is met, the Bianchi identities guarantee thay thél continue to be satisfied
for all future slices in the evolution. This decompositigrknown as thérnowitt-Deser-
Misner (ADM) scheme.

We are now left with the freedom to choose five componentsettihee metric and
three components of the extrinsic curvature. The metrigimstfull three dimensional
coordinate invariance on each slice. Each hypersurfagesepts @& = const. slice of
the spacetime, so we choose how the initial hypersurfacmliteelded in spacetime is
represented by the trace of our extrinsic curvatldreWwe must now choose a method for
decomposing our constraint equations to address thisdneed

One of the first problems to solve in numerical relativitydgind a formulation of the
Einstein equations which gives a stable and accurate longteolution. In the ADM ap-
proach, the Einstein equations split into elliptic constrequations within the spacelike
hypersurfaces and hyperbolic evolution equations gomgrttie time evolution normal
to the hypersurfaces. These constraints can be enforcbéhwiite evolution or left as
a test of the accuracy of the evolution. In addition, cergnige variables appear that
can be freely specified and that reflect the general covaiahgeneral relativity — the
field equations are invariant under transformations of ffecstime coordinates. These
properties create two new problems: how best to choose tigegand how to deal with
the evolution of the constraints. | discuss these two isButge next sections.

2.3.2 The BSSNOK Formulation

Although the ADM formulation can work for some models of gtational collapse or
cosmological models in numerical treatments, it does rtafgahe requirements for sta-
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ble longterm evolution necessary for simulating the irepimerger, and ringdown of
compact binaries. This is because first order form of the ARMagions is only weakly
hyperbolic. It was recognized by Shiabata, Nakamura andataoand Kojima [27, 28]
and later elaborated further by Baumgarte and Shapiro 28] & conformal traceless
decomposition of the ADM variables results in a scheme thava for stable longterm
evolutions numerically. This scheme is known as the BSSN@esn. The ADM de-
composition gives us evolution equations for the metfgicin equation .13 and the
extrinsic curvaturek’;; in equation 2.14. We further transform these variables as fol-
lows.

The three metricy;;, is conformally transformed via

74¢’Yij (218)

1 -
¢:Elndet%‘j7 Yij = €
Here the conformal factap is evolved as an independent variable, gndis subject to
the constraintlet”;; = 1. The extrinsic curvature is subjected to the same transttom,
and its tracetr K;;, is additionally evolved as an independent variable

- - _ 1
K= tI‘KZ'j = ngKZ'j, Aij =1 (Kz] - g’}/z]K> > (2.19)

wheretr A;; = 0. Lastly, we introduce the new evolution variablés= 57*T%,, defined
in terms of the Christoffel symbols of the conformal threetmoe These connection
coefficients are introduced to better calculate the Ricorature, and to make our system
of evolution equations reproduce the wave equation in tieali limit.

Now that we have introduced the variables 7;;, K, A;;, T?) to replace(yi;, Ki;),
the Einstein equations specify a set of evolution equationthese new variables

(Gt Eﬁ)’? == —20[/127‘ s (220)
1

(0= Lp)é = —zak, (2.21)

(Bt — ﬁﬁ)A” = _4(15 [ D; D o+ QRZ]] + « (KA” — 214Lk14§> s (222)

(0 — Ls)K = —D'Dia+a (Aijiﬁj + §K2> , (2.23)

i ~j i L i 9 T I i 2w j
(3 — LT = 37%9;0,8" + 37 19;018" + 310;T; — T;0;8" + S0;5(2.24)
. U . 92
— 24990+ 2a <r;kAJ’“ +6A90;¢ — gwajK> :
Where TF denotes the trace free part of the tensors in the bracﬂéjﬁ (= Ti; —

gzjg Ty /3 for ‘any tensorZ;j). This system gives us seventeen dynamical variables
(¢,%i;, K, A;;, %), four gauge quantitiega, 3°), and nine constraint quantities (from
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equations 2.14 and [2.17) and the constraints on the new variables

H = e [R—sbﬂ'bj¢—8(ﬁj¢)(bj¢)]+ (2.25)
§ (K>~ A7) - 4,49,

Mi = 6A1(D6) — 2457(Dig) — S (D) + 79 (Did),  (2.26)

A = AyaY, (2.27)

S = detdy;—1, (2.28)

g = T'-7,, (2.29)

and we are left with four degrees of freedom for the grawitel polarization modes— two

in the conformal three metrig;;, and two in the transverse traceless part of the extrinsic
curvatureA?.. All other freedoms either represent coordinate freedonee fixed by

the constraint equations. These constraint equationsdepéndent of the kinematical
variableso and 3! that govern how our coordinates move through spacetime BE&N
code used in this thesis enforces our coordinate constrgihtS) but the physical con-
straints(, M?*) are not actively enforced, and are allowed to evolve freadythey are
used to monitor the accuracy of our evolutions [30]. We firat the BSSN system allows
for a variety of gauge conditions far and S but for stable evolutions through merger
there is a commonly used and convenient standard for cowt@mypnumerical relativity.

Now, in order to evolve the system we have to specify conution the lapser and
shift 3°. The simplest approach is to set= 1 and3’ = 0, but this leads to a formulation
which is not strongly hyperbolic. Callegeodesic slicingthis can cause the slice to touch
the coordinate singularity in the data [31]. Since one da#siarmally know in advance
what spacetime the initial data one specifies on the inijipehsurface will evolve to, one
would not like to specify the gauge as a fixed function of spawe Rather, we would like
to tie it to the dynamics so that it can adapt itself to the o One common approach
to evolve the lapse is according to the “1+log” slicing cdiuchi [32]

O — B0 = —20(K — Ky), (2.30)

where K is the initial value of the trace of the extrinsic curvatu@ne can then evolve
the shift according to a hyperboli€-driver’ condition [33]

0.5 — 30,8 — %aBi, (2.31)
O,B" — BjajBi = oI — ﬂjajfi —nB¢, (2.32)

wheren is a damping coefficient. The advection terms on the righidhsides of these
equations are required to account for the advection of thetpres in “moving-puncture”
evolutions, which will be discussed in Sectidh4.4. These are the gauge conditions
chosen for all BSSN evolutions discussed in this disseratihis system is symmetric
hyperbolic (the significance of which will be discussed irct®m [2.6.4) in the linear
approximation and the corresponding linear initial valuebtem is, thus, well-posed.
Since in this case the evolution system for the constrainabtes can also be reduced to
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a symmetric hyperbolic system, it follows that the constiiare satisfied for all time if
satisfied initially.

This variation of the ADM equations containing additionakgiary evolution terms,
known as the BSSN formulation, has been implemented withtgueccess. The evolution
equations will have a set of eigenvalues and eigenvectorshvitidicate the presence of
modes that travel at or below the speed of light. Howeversuminal modes will permit
error from inside the horizon to escape, and zero speed mwileseate an accumula-
tion of error on the evolution grid which will not advect awayhe virtue of the BSSN
formulation is that all constraint-violating modes trae¢lthe speed of light. This is not
the case for the ADM equations. In addition, while the ADMtsys is known to only
be weakly hyperbolic, the BSSN formulation has been showretstrongly hyperbolic
in the linear regime [34]. In the next section | describe aod@position of the Einstein
equations which is manifestly symmetric hyperbolic in thi fionlinear regime.

2.3.3 The Harmonic Formulation

The decomposition of the Einstein tensor into evolutionagigus and constraints leaves
four degrees of freedom in the spacetime metric that are etdbys the field equations
themselves, but can be freely specified. Bxal approach, these four degrees of freedom
are determined by the choice of the lapse and shift, whichuailsdo specifying four out
of ten metric components. The Arnowitt-Deser-Misner (“ADMquations [26] are a
well known reduction of the Einstein system correspondmthis style of gauge choice.

An alternate approach to fixing the gauge degrees of freegatifies the action of
the wave operator on the coordinates, regarded as four spaatities. This is done by
first choosing four functiong™® (x*, g*” ), known as ougauge source functionand then
constructing a coordinate mag} subject to the condition [35] that the d’Alembertian of
each coordinate is

V, Vi = (\/_—gguﬁﬁﬁxa) _— (2.33)

1
—0
We may rewrite Eqs.2.33 as constrained variables

C*:=V,V%® - F* =0, (2.34)

and using them in combination with the Einstein ten§8t one obtains th@eneralized
harmonicevolution system

1
EW =G — vierY) 4 59" Val®. (2.35)

HereT™ is treated formally as a vector in construction the covarderivative V+~".
When the constraints'® are satisfied, this gives a manifestly hyperbolic evolutigsiem

1
B = —vWpY) 4 59"V (2.36)

If the gauge source functions are chosen such that they doepsnd on derivatives
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of the metric, they will not enter the principle part of thessgm and will not affect its

well-posedness or stability numerically. In terms of theagables, the vacuum Einstein
equations are a system of ten wave equations acting on thréecro@mponents, coupled
through the coefficients of the wave operator and the soeroest The principle part of
the Einstein equations, thus, reduces to a second orderbolieform. This method is

the called the 'generalized harmonic’ formulation of thedein equations. Harmonic
coordinates were first introduced by deDonder [36] in 192dethice the Einstein equa-
tions to 10 quasilinear wave equations. They were later bgedhoquet-Bruhat [25] to

give the first well-posed version of the Cauchy problem far ginavitational field. The

first successful numerical evolutions of the binary blackeharoblems was solved in
harmonic coordinates by Pretorius [19] in 2005. Many redeans have implemented nu-
merical evolutions schemes for harmonic formulations effinstein equations [37—41]
and since successfully solved the inspiral and merger @rpiblack hole problems.

For the formulation used in this dissertation we use a deasdiinverse metrig” :=
v/ —gg" as evolution variables, the harmonic constraints EQs34 take the form

1
C% = ———83§*° — F* =0, (2.37)
while for the evolution equations we obtain

9 (9,0 )(O0g)
Vg 0 )G

0o (977029") — 2v/=99"7 97 T} Loy = V/=9(0,9") (059" +

1 gr? 1
1 [ T po - po
29 (29 /—g (8/)9)(609) grpoaTg + /—g (&79)@)9 >

+ 2y/—gVWHEY) — \/Zgg"V FP 4/ —gA" =0, (2.38)

which takes the form of a quasilinear wave equation, wherténfinal term we have
allowed for a constraint adjustment function which may dhepen the metric and its first
derivatives,

AR = CP ALY (2, gpoy Or Gpor ) - (2.39)

These constraint adjustments implemented in the code eee ¢iom [42] and have the
form

al QQvaPt a3 IAvid
2 Yo _owov - B otV 2.40
V=g e+ e,,CCT /— gtt ’ ( )

where thea; > 0 are adjustable parametets, is the natural metric associated with the
Cauchy slicing, and is a small positive number chosen to ensure regularity. § tersns
vanish when the constraints are satisfied, and thus do rexttdffe principle part of the
evolution system. The effect of these terms is to suppress Wavelength instabilities
in standardized tests for periodic boundary conditionse fitst and second term in the
adjustments suppress constraint violations in the noatinegime, while the third term
leads to constraint damping in the linear regime.

A = L PG

Assuming that the gauge source functid® are also chosen such that they do not
depend on derivatives of the metric, then the principle paEq. .38 consists of only
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its first term. That is, we have a set of ten wave equationseofdim
0p (977 0s9"") = S, (2.41)

whereS*” are non-principle source terms consisting of at most firsvagves of the evo-
lution variables. By implication, this system inherits {®perty of the well-posedness
of the initial-boundary value problem for the wave equation

Note that we do not explicitly enforce the harmonic constsaduring the evolution.
Instead, we invoke the Bianchi identities, which for waveaipns of the homogeneous
form gives

g7 0,0,C" + LEP0,C7 + MEC? =0, (2.42)

where the matrices and/ are functions of the metric and its first and second derigativ
Itis essential to have all of the initial data constructed imay that satisfies the conditions

cr=0, 90" =0, (2.43)

as well as a construction of the boundary data that impliesradgeneous boundary
condition for the constraints. However, by satisfying thesnditions, we arrive at a well-
posed initial boundary value problem (IBVP) for the conisiraropagation system. Work
by Kreiss, Winicour, Reula and Sarbach [43] demonstratasittis possible to construct
such boundary data while keeping the IBVP of the evolutiosteay of the metric vari-
ables well-posed. In Sectio.fl] we implement and test such boundary conditions and
compare them with simpler (unconstrained SAT and non-SAndary treatments for
a number of test-problems. Since the harmonic constraimpéyievolution equations for
the ‘lapse’ and ‘shift’, the only remaining free initial @afin addition to the three metric
and extrinsic curvature of the Cauchy hypersurface) arenitial choices of lapse and
shift through the choice of gauge source functions.

In order to understand the feasibility of EQ.88 as an unconstrained evolution sys-
tem, one needs to have insight into the associated cortgpraipagation system [44—46]

VVCr = S°(g,dg,0%g, C,0C, A, 0A), (2.44)

whereS” is a source term dependent on the metric, the constraimtgathstraint adjust-
ment term, and their derivatives. The principal part of 44 is, again, that of a wave
operator, implying the connection to results regardingib#-posedness of the IBVP for
the wave equation.

This harmonic decomposition is second order in time. In th@ecdiscussed in this
dissertation, we found it more convenient to discretizews®ithe method of lines to time-
integrate an evolution system which is first order in timee Taduction to first order in
time con be done in a number of ways. We have implemented thergiezed harmonic
evolution system EQs.2(38, cast in a form that is first differential-order in time, and
second-differential order in space. We introduced thel@nyivariables

Q" =n9,g*" (2.45)

are used to eliminate the second time-derivatives, wheiie time-like and tangential to
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the outer boundary [40]. The resulting evolution systenesake form

git 1
O gt = —ﬁ ;g + ﬁ@”lﬂ (2.46)

B it jt it ~
2Q™ = &, ((g“ - ) ajgﬂ”) ) (%Q“”) + §"(5,09, F,0F), (2.47)

whereS* (g, 83, F, OF) are non-principle source terms consisting of at most finsvae
tives of the evolution variables and are determined by oaicehof gauge.

The AEI harmonic code used in this dissertation in Sect®fj s a fourth-order ac-
curate finite-difference code based on the University déBurgh Harmonic code, Abigel
[47], which incorporates theorems establishing well-pogss and numerical stability of
the harmonic initial-boundary value problem. As notediegrthe gauge source functions
F* may be chosen to be arbitrary functions of the spacetimedauwate metric. They can
be viewed as differential gauge conditions on the densitiretric. For most of the tests
in this dissertation we set our gauge source functiBtis= 0 and thus evolve a strictly
harmonic system. The exceptions are for analytic converyests, where we set

F* = —;8 gk (2.48)
_detg,uz/ v7(0) '
(0)
wheregé‘o”) is our analytic metric; and for black hole spacetimes, whezeset

w
Pl = ——— (3" — "), 2.49
‘/_detguu(g n ) ( )
wheren*" is the Minkowski metric, and is a smooth, weighting function. In our binary
black hole simulations, we have found that this choice ofggasource function keeps
the lapse and shift under reasonable control as the blads leslolve. The rest of the
simulations performed in this thesis are purely harmonie.(#* = 0).

Unlike mixed hyperbolic-elliptic formulations, hyperfimformulations, such as this
one have the advantage that there are a well-developed matiical methods for ana-
lyzing the well-posedness of the IBVP. For both harmonic B&6N formulations, this
hinges on the boundary conditions that one imposes at ttez batindaries of the com-
putational domain. Obtaining stable boundary conditidrag avoid spurious reflections
and preserve well-posedness is a main focus of this thedisvlrbe discussed for both
formulations discussed in this section and in Cha8gr [

2.4 |Initial Data
Let us watch well our beginnings, and results will managertbelves.

Alexander Clark
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General relativity, as all classical physics, is deterstioi- the behaviour of our sys-
tem is completely dependent on initial conditions. If datderived that gives “appropriate
initial data” such that it specifies an initial slice that guély determines the system for
all subsequent evolution, we say that we have an initialev&umulation. If, addition-
ally, small changes in initial data result only in locally alirchanges in the solution, and
changes in the system are causally bounded, then we mayataydtave avell-posed
initial data formulation. All numerical relativity simuli@ns must start with a hypersur-
face that describes our gravitational field at some initiaesn space-time. This is our
initial data (ID). We must evolve this data into neighborimgpersurfaces according to
our evolution equations, as defined by our decompositiomefEinstein equations, as
discussed in the previous sectidhd]. The Einstein equations also constrain our choices
for initial data. Because of the non-linearity there is naque way of choosing which
parts of our initial data may be freely specified, and whichtpanay be constrained.
When constructing solutions of the Einstein initial valugiations we are free to specify
the topology of the initial data hypersurface. The Einseminations place no constraints
on the topology of the spacetime they describe, or of the tsypfaces that foliate it. In
this section we will introduce some common methods for desg binary black hole
initial data in the two coordinate systems introduced indreious section.

Two methods have been developed to deal with the singulardiylem of numerical
relativity — namely thgouncturemethod [48, 49], which generalizes the Brill-Lindquist
prescription [50] for initial data of black holes at rest amsks the Bowen-York extrinsic
curvature [51] to solve the Hamiltonian constraint nunmedhcfor moving spinning black
hole initial data [49,52]; and thexcisionmethod [53], in which a portion of the spacetime
containing the singularity is not evolved and the horizorraunding it is treated as in
inner boundary. In this section we introduce these two nusthd will also discuss and
compare two methods used for obtaining physical orbitahipa@ters spins needed for
to prescribe the initial data described here — namely qriesilar, and post-Newtonian
derived parameters. First, as an illustration | will ddsersingle black hole data, and then
I will move forward to multiple black hole initial data spécation.

2.4.1 Time Symmetric Schwarzschild

The simplest black hole solution is the Schwarzschild smhytas it represents a static
spherically symmetric single black hole connecting twosedly disconnected asymptot-
ically flat surfaces. The simplest representations of tHev@eczschild solution are time-
symmetric (;; = 0), and thus exist on a “maximally embedded” hypersurfdce={ 0).
This fixes our choice of foliation foE. The interval for Schwarzschild may be written

|- M\® M\*
ds® = — ( ig) dt® + <1 + —~> (a7 +7#2d0* + Psin0de?) . (2.50)
1+ oF 2r

M represents the mass of the black hole as measured at spaoéiliity. By choosing
a time-symmetric initial data hypersurface, we immediaggt /;; = 0, eliminating the
need to solve the momentum constraints. If we choose a aoafdhree geometry given
by a flat metric the Hamiltonian constraint becomé¥» = 0 as we approach infinite
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distance. The simplest solution of this equation is

M
¢=1+—, (2.51)
2r
we now have the full Cauchy data representing a single statyoblack hole. All that is
left is to choose a lapse and shift before we can integratevibleition equations inZ.14
and R2.193. In this case we may demand thatX vanishes. This yields maximal slicing

equation for the lapse, which takes the form
Viap) =0. (2.52)

It is convenient, in these coordinates, to choose boundarglitons such that the lapse is
frozen at the event horizom (7 = M /2) = 0) and such that it goes to one at infinity

-y
a= T, (2.53)
1+2—7:

If we now choose?* = 0, we find that the left hand side of the evolution equationsskani
and we have a static solution for the Einstein equations.

With this choice for the lapse and shift, frozen at the evemizion, we find that the
solution covers only the black hole exterior. To cover therior would require the use
of a non-spacelike slice. This is what happens when the &thavarzschild areal-radial
coordinates are used. At= 2M we would encounter a coordinate singularity, which is
not possible to evolve numerically. This frozen lapse arnfi ahthe horizon also creates
an incompatible over-specification of the gauge for thedworiboundary.

2.4.2 Brill-Lindquist Data

As we saw in the previous section, the easiest way to genigriéitd data is to assume

time symmetry and a conformally flat three geometry. One@aagr for generating time-

symmetric multiple black hole data is Brill-Lindquist i@t data [50]. We again assume
a flat conformal geometry, and we have to solve for a Ham#tomionstraint of the form

V2 = 0. We can use the linearity of the Hamiltonian constraint toasfe the solution to

be a superposition of each black hole solution. Ndblack holes

N
B fio
¢_1+;2’x_00‘, (2.54)

where| x — C,, | is the distance fron®’, to the position of the hole in Euclidean space,
andu, are constants related to the masses of the holes. EachapeinC, represents
infinity in a different causally disconnected universe,imvN + 1 asymptotically flat
hypersurfaces connected throuiyhblack holes. The universe containifg black holes
cannot be isometric to any of the other universes connect&adh hole, unlike in the
Schwarzschild solution. Brill-Lindquist data havé singular points representing an im-
age of infinity as seen through the throat of the black holeneoting to 'our’ universe.
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Misner [54] found a construction for the time-symmetric Hiomian constraint which
has two isometric asymptotically flat hypersurfacesXoblack holes. The analytic rep-
resentation of Misner initial data can only be made in terframanfinite series expansion.
This data contains an infinite number of singular points &mtehole. In the next sections
| will address two ways by which these singularities are td&&h numerically, and the
formulation of more generic, more physically relevantialitiata.

2.4.3 Excision

Time-symmetric black-hole solutions of the constraintatmns such as those in the pre-
vious section are useful as test cases, because they hdyé&casalutions. However,
they are not physically accurate or relevant. To generaie-asymmetric solutions for
moving and/or spinning black holes we may make generatizatof the Misner and Brill-
Lindquist data formulations. The first approach to be devaib(and the approach used
in our black hole spacetimes for all harmonic coordinateutions) is a generalization
of Misner data. This choice was made because two isometienses means solving for
one universe gives you both solutions, rather than tryingotee constraints forv + 1
manifolds. The fact that the throats of the black holes aedfigoint sets in the isometry
allows you to specify boundary conditions on the horizors thiis excise the black hole
interiors. This generalization was developed by York argdcoilaborator [51,55-58] in
1979, and was for a very long time the standard choice foalidéta in numerical rela-
tivity for binary black hole spacetimes. This approach heguvith a set of assumptions
about the geometry of the solution

K = 0, mazimal slicing , (2.55)
¥ o= fij, con formal flatness,
Dl = 1, asymptotic flatness ,

where f;; represents a flat metric in the chosen coordinate system. féamare of the
assumption of conformal flatness is that, for the BSSN sysiexiind that the momentum
constraints decouple from the Hamiltonian constraint.sTsimportant because it allow
one to choose analytic solutions for black holes with botmaota and spins.

The solution of the momentum constraints gives us the thaeepart of the extrinsic
curvature

~ 3 .
A = %7 {ij + Pjni — (fij — ninj)Pknk] (2.56)

3
+ 3 [Ekilslnknj + ekﬂSlnkni] ,

whereP? andS* are vector parameters andlis the outward pointing unit normal of the
sphere in flat conformal space. Using this solution and tearaptions in .55 we can

set physical values for the linear and angular momentum @i b&ack hole in our intial
data construction. We find that the linear momentum of thesrgyoface is given by

and the angular momentum 5. Because the momentum constraints are linear we can
add any number of solutions for any collection of momenta.
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By the method of images we can make the tensors in our solimtiension symmetric,
like those in the Misner solution. There are two inversiomsyetric solutions for the
extrinsic curvature of a single black hole

~ 3 ‘
A = 22 [Pi”j + Pyni — (fij — nmJ)Pknk} (2.57)
3a? .
T 94 [Pi”j + Pjni + (fij — 5ninj) P nk}
3
+ T—g [Ekilslnknj + ekﬂSlnkni} ,

wherea is the radius of the throat of the black hole. This= a surface is where we set
our excision boundary conditions. For more than one blad& tiee process for making
the solution inversion symmetric gives and infinite sermsaton. However this solution

converges rapidly and is easy to evaluate numerically.

Once we have an inversion symmetric extrinsic curvature,care find a likewise
inversion symmetric solution for the Hamiltonian consitai With the assumptions in
[2.59 the Hamiltonian constraint for our solution is

@2¢4-é¢*iimﬁﬁzzo. (2.58)

The isometry condition gives us a condition on the conforfaelor, ¢, at the throat of
each hole
¢

2r,

wheren! is the outward pointing unit normal to the” throat anda,, is the coordinate
radius of thes'” throat. We can plug this condition into our equation for trantiltonian
constraint .58 as a boundary condition on the horizons of the throats windvirg
the region exterior to the throats. Finally, all that is lisfto choose an outer boundary
condition. This is needed in order for the quasilinear gtlipquations above to be solved
as a well-posed boundary-value problem. This final comlitomes from the fact that
we have an asymptotically flat solution. Thus, the solutiehdves as

NVt lag=—5— las » (2.59)

E
¢=1++ O(r=?), (2.60)
whereF is the total ADM energy content of the initial hypersurfate.Chapter 8] and
Section R.6.5 we will discuss some solutions to this boundary value pFobl

2.4.4 Punctures

In 1997 Brandt and Briigmann [49] realized a method to factdramalytically the be-
havior of the singular points in the Euclidean manifold o i + 1 sheet Brill-Lindquist
approach. This “puncture” method allows us to rewrite thest@int equations on an
N + 1 hypersurface manifold as equations for different function a simple Euclidean
manifold. This approach was first successfully used for migaksimulations of binary
black hole inspirals in 2005 [20-22, 33,59, 60], and hasesb@come the standard initial
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Figure 2.3: A diagram illustrating the various described methods dfahdata formu-
lation. Image (a) represents tié + 1 sheet description from of Brill-
Lindquist data and the puncture approach; image (b) represéisner data
and the Bowen-York solution, and image (c) represents Msmermhole
solution.

data formulation for binary black hole simulations in the®®evolution system.

The generalization of the Brill-Lindquist data begins wilte same assumptions as the
Bowen-York approach?.55. We, therefore, again have the trace-free part of theresitri
curvature from the solution of the momentum constraints

3

3 Ik 1 k
=+ 3 [ekuSn n; + €xS'n nl] ,

whereP? and S’ are vector parameters andlis the outward pointing unit normal of the
sphere in flat conformal space. Then, based on a time-syneraetution we may assume
a conformal factor of the form

1 1 "
0
b=—tu, —=3 (2.62)
X X 0:12\36—00\

Here we require asymptotic flathess and a smooth functiom,fand thus require, =
1+ O(r~!). Substituting the Hamiltonian constraint gives

1

Vu+n(l+xu) =0, n= 2

x A A (2.63)

Near each singularity, or “puncture”, we obtain~| = — C, |. The trace-free part
of the extrinsic curvature;; A behaves no worse thadnz — C,, |~¢, and son will
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vanish at each puncture faster tHan— C, |. This gives us a uniqué solution of our
modified Hamiltonian constraint, and an approach whichvallos to specify the mass
and position of our black holes as parameterized«pyand C, respectively. The linear
momenta and spins are, again, parameterizef,bgnd S,, respectively in the conformal
extrinsic curvature of each hole. We only need to obtain atiwl for « on a simple
Euclidean manifold. With this formulation there is no needifiner boundary conditions,
as the singularity is avoided if we choose a grid for our etiofudomain such thaf’,

is between grid points, and is continuous. This is a significant advantage, as dealing
with excision boundaries accurately in highly dynamic ndog simulations is one of
the biggest challenges of the Bowen-York approach. Botludmez of the numerical and
physical inaccuracies created by artificial boundaried, rore significantly because of
the constraints on the gauge.

In this fixed puncture prescription, the black hole singtyas split into singular and
nonsingular pieces, with the singular piece being handtedytically and not evolved.
Because the coordinates of the punctures are fixed, theinatedsystem becomes dis-
torted as the binary is evolved, eventually causing any migalecode to crash. However,
by choosing appropriate gauge conditions, and by takingraidge of the discrete nature
of finite differencing codes used in numerical relativitywas found that the singular part
of the puncture could be evolved along with the nonsingudat, phus avoiding coordinate
distortion [61]. This breakthrough, referred to as the “ingvpuncture” method, opened
the door for many numerical relativity groups studying klaole binaries to successfully
run long-term stable simulations from inspiral smoothlyotigh merger and ringdown
without tuning.

To avoid problems with evolving the interior of the hole weedgo make sure no
derivatives of the extrinsic curvature show up in our evolutequations. We, therefore,
must choose a shift vector which vanishes, and a lapse fahwisifirst derivatives vanish
at the punctures. This is not a problem, because for gridgstad about the punctures,
the first derivatives of the lapse are sufficiently close to zero near the punctures that
they cause no discontinuities in the evolved data. Thusmgoitant element in achiev-
ing stable evolution of the binary black hole problem in tf&3N formulation is choosing
coordinates that allow the punctures to move through theewgithout allowing any evo-
lution at the location of the puncture itself. The condiidor lapsea and shifts’ that
have been most successful thus far are knowi+ésy slicingand theGamma driver shift
conditions

oo — o = —20(K — Kp), (2.64)
0.5 — 30,8 — %aBi, (2.65)
OB — 3 o;B" = oI - oI —nB", (2.66)

as discussed in sectio.B.4, where K is the initial value of the trace of the extrinsic
curvature. Common initial conditions afé = B' = 0 anda = 1/¢%;, wheregpy, =

1+, ﬁ is the Brill-Linquist conformal factor used for the punaub.

The problem with both the initial data generation methodscdeed is that they as-
sumeK = 0,M% = 0 and that the conformal geometry is flat. These assumptions
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are not necessarily compatible with the physical system n@drging to simulate. For
either method the solution for a single spinning black halesdnot generate a Kerr so-
lution, as the Kerr solution is not a conformally flat geometBince the Kerr solution
is stationary, conformally flat intial data will always cairt a non-vanishing dynamical
component. Thus, when we evolve either of the initial das@riptions described, the
system will emit non-physical gravitational radiation,ibattempts to settle to the Kerr
geometry. This means that all simulations from these iniléa will generate some un-
physical ‘junk’ radiation which will contaminate the iratisignal. Fortunately, such junk
radiation will radiate off the evolution domain and leaveewslving physically realistic
data. However, this inaccuracy must always be taken intowattc and reflections of the
junk radiation are an important reason for wanting bettemigary conditions.

2.5 Numerical Methods and Implementation

Man inhabits a realm half in and half out of nature, his mineching forever
beyond the tool, the uniformity, the law, into some realmcvlig that of the
mind alone.

Loren Eiseley

Now that we have a set of evolution equations, gauge conditiand initial data,
we need to choose a method to evolve this system numericadligieving a numerical
implementation of a PDE system is a difficult task. We arengyto model an infinite con-
tinuum spacetime with a finite discrete numerical represt@nt. Modelling the Einstein
equations in black hole spacetimes is wrought with probldrask of a preferred frame,
gauge issues, a system of ten tightly coupled equationgulsirities, artificial bound-
aries, accelerating dynamics all complicate the task ofessfully evolving an accurate
representation of the physical system. A crucial compoteahy numerical code is the
choice of numerical methods, which, for large simulationsstndeal with a balance of
accuracy and efficiency, in addition to the problems spetifithe modelling of binary
black hole spacetimes. Here | give a partial descriptiorhefrhethods used to address
these problems. In the next sectié@] | will describe the implementation and execution
of these methods and the framework under which they weresimghted.

2.5.1 The Finite Difference Approximation

To evolve our evolution equations numerically we must fiistiktize our continuum in-

tial data and solve our PDEs on this discrete grid. In thedfidifference approach one
covers the simulation domain by a discrete grid and the nigadexpproximation is repre-

sented by its values at the grid points. Using Taylor seripaisions, we replace a partial
differential equation with an algebraic equation on a diteicomputational grid in order
to discretize the form of the equation. Solving the diseetipartial differential equation

consists of a finite series of basic floating point operatishigh can be performed rapidly
on modern computer clusters.
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Thus we must evolve our system using a discrete grid. To dotl@ numerical
domain is covered by an equidistant grid, where a Cartesidriggrepresented by points
at the values (for a grid staggered about the origin)

1
7= (i=3hs, 0<i<N, (2.67)
1 .
yj = (G=%hy,  0<j<Ny, (2.68)
1
s = (k=hey  0<E<N.. (2.69)

Here N, , N,, and N, are the total number of grid points in each direction, arid the
grid spacing in each direction,

(xmam - xmzn) (ymam - ymm) (Zmam - Zmin)
hy = ———-~ h T h,=——=>. (2.70
= e twin) g, e ) e Znin) (.70

The finite difference approach approximates a continuumessgon using the Taylor
series expansion. By taking Taylor series expansions aboqaint, a discrete approx-
imation to the derivative operator at that point is obtain€@r example, for centered
differencing in first order convergent form

daf | R2df R

fath) = f@)+hlotg gl to gl (2.71)
d h? d? h3 d3

f(.%'—h) = f(l‘)—h% JC_?d—I'J;‘x_Fd—Z:]; ’3&4‘ (2-72)
d  fle+h)—fle—h) 1, :

dr oh — 5/ (©Oh%, (2.73)

wherexz — h < ( < x + h andh is the grid spacing from Eq.2[7(. The discrete

approximation differs from the continuum expression byua¢ation error related to the
computational grid spacing. All simulations in this theare with fourth or sixth order
convergent differencing operators. Fourth order opesadoe:

df —f(x+2h)+8f(x+h)—8f(x —h)+ f(z —2h)

— , (2.74)
dx 12h
d?f  —f(@+2h) +16f(x+h) —30f(z) + 16f(x — h) — f(z + 2h)
S — (2.75)
dz? 12h2

with a five point stencil for second derivatives. Most sintiolias in this dissertation are
done using summation by parts (SBP) satisfying derivatperators, with weighted side-
ways differencing on the boundary. The derivation and im@etation of the first and
second derivative operators will be discussed in Sec8adh3.

Assuming that we have a well-behaved solution which allowaydor series expan-
sion, we may relate the numerical solutirio the analytical solutiot$' via

S=S+0(n%), (2.76)
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where o is the convergence rates may be measured by running a given simulation
at multiple resolutions with the same conditions. Givereéhdiscretized solutions,
S(h),S(h/q) andS(h/q?) we obtain

L = S(hfq)=8(h) =O((h/g)" =17, (2.77)
M = S(h/q®) = 5(h/q) = O((h/q*)” — (h/q)"

L _ a1 _ 5 _ log(7)

M = ogw—go T 77 Tlogg

In addition to proving that our discrete system approximaecontinuum solution as
h — 0, from o we may extrapolate our numerical results to a continuunmtisolu

Convergence in numerical simulations is a necessary d¢onditr code verification.
This is particularly true for the numerical relativity ceee ninary black hole simulations,
because we have no exact solutions and no data to comparestag#ithe solutions
produced by a code run for the same parameters at differssluteons does not converge
at the expected rate, then there is a source of divergencevdwene in the code and
something is broken. Courant, Friedrichs, and Lewy intoeduthe significance of this
problem in numerical simulations in 1928 [62]. No finite diféncing simulation can
claim to solve a differential equation accurately unlessait show convergence of the
proper order. All simulations in this thesis were testeddonvergence for various test
cases. All spatial differences used in this thesis arelicander, and thus have a truncation
error proportional tv*. The harmonic simulations have second order differencinthe
boundaries and thus converge to second order as those liaeiesuspread to the rest
of the simulation domain. This convergence order depentsmlg on the order of the
spatial differencing methods, but also on the order of thiéhoteused for time integration,
which will be discussed in the next section.

2.5.2 Method of Lines

Now that we have discretized our simulation domain and défapproximations to the
continuum spatial differential operators, we need to dedimeay to step forward in time
by integrating our hyperbolic evolution equations. Theegahmethod we use to do this
in all simulations discussed in this thesis is called thehoétf lines (MoL). The idea is
to finite-difference the spatial derivatives of the PDE ascdibed in the previous section,
leaving the time derivatives continuous. This leads to glmliset of ordinary differential
equations (ODE) for the time dependence of the variables (u;;) at the spatial grid
points,
ou = f(t,u), (2.78)

With the initial conditionsu(ty) = ug. A suitable ODE integrator is then used to integrate
these ODEs forward in time. There are many different podsssi for this, but in the
simulations discussed in this dissertation, we used eitheiiterative Crank Nicolson
scheme, or the 4th order Runge-Kutta scheme.

The ODE integrators we consider here belong to the class pifcéxRunge-Kutta
schemes. Given the unknowng at timet", these compute an approximatiafit! at
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time "t = " + At as follows:

kro= f("u"),
ky = f(tn + At u' + azlAtkl) ,
ks = f(tn + c3At, u" + ag1 Atk + CL32A7§]€2) ,

ks = f(t"+csh, u" + ag Atk + apAtky + ... + a5 s 1Atks_1),
u" Tt = w4 At(biky 4 ...+ bsky)

for ans stage time stepping scheme. Any particular integratioemehis uniquely defined
by the coefficients.;;, b; andc;, which may be written as a tableau

0
C2 | a21
C3 | az1r asz2 (2.79)
Cs | As1 As2 ... Qss—1
by by ... b, b

Consistency requires that;_, b, = 1. The method is said to heth order for a smooth
function f if
| w™ ™ —u™ ||= O(APT) (2.80)

The simplest Runge-Kutta method is the Euler method
u" =+ ALf(E",u"), (2.81)

which is first-order and is represented by the tableau

0
Jﬁ (2.82)

Two second-order Runge-Kutta methods are given by thedakle

o= O

!
1
2
| |
The first is known as thapezoidal rule the second as thaidpoint rule Two examples
of third-order methods are

(2.83)

[en) SIEH

1

DO =

0 0
111
11 101
iy 2 10101 (2.84)
3 3 2 14 4
T 0 1 t—1—
4 4 6 6 3
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The first isHeun’s (third order) methodthe second is derived in Shu and Osher [63].
There are many known fourth-order Runge-Kutta (RK4) meshddde one used in the
simulations in this dissertation is as follows

0
L1
i1 1
Ilo 1 (2.85)
110 0 1
‘l I I 1
6 3 3 6

For orderg > 4, it is one can no longer construct a method wits p stages.

Another method that in very popular in humerical relativisythe iterative Crank-
Nicolson(ICN) methodb4], which was developed by Choptuik from timplicit Crank
Nicolson schemgs5]. ICN is given by the iteration equations

ky = f(tn7un)7
1 1
1 1

1 1
kjs = f(tn—|— §At, u”—{— EAtk871)>
u"tt = w4 Atky) .

In the limit s — oo this yields the implicit Crank-Nicolson method

unJrl —nn ut 4+ unJrl

As you can see from equatio.Bq, the iterative version of ICN can also be seen as an
explicit Runge-Kutta scheme with

0
111
13 1
o (2.87)
: ' \
310 0 2
0 0 0 1

As you can see, the ICN method is always second order, regardf the number of steps.
Thus it is worth while to compare with the implicit Crank-Mison scheme, to minimize
the computational time spent on time integration while nmazing the regime of values
of At which preserve a stable evolution. All of the simulationscdissed in this thesis
use RK4 time integration in order to preserve fourth ordewveogence.
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2.5.3 Numerical Dissipation

For complicated systems of PDEs there exist solutions inrttegration of the system
that grow exponentially, like®/", for some positive value af and grid spacing. These
unstable modes are not present in the continuum problemppgaa as a result of the
finite difference approximatior2[5.]. The instabilities may arise because high frequency
modes may appear and grow because they cannot be resolvld dist¢rete grid. For
this reason we need to apply a filter to suppress these atlifigrowing high frequency
modes. We call this approach numerical dissipation.

One of the most popular approaches for the elimination addtepurious modes is
known asKreiss-Oliger dissipatiori66, 67]. We may apply this method of dissipation to
the right-hand-side (RHS) of our time integration equafi®7g via an operator such as

1 _
(D4u)j = —1—6h 1(Uj,2 — 4uj,1 + GUJ' — 4Uj+1 + uj+2) , (2.88)
from the Taylor expansion

(Dyu); = _%6#(1/"’)]- + O, (2.89)

For our simulations we use sixth order dissipation. Becausefinite-differencing
is forth-order accurate, the order of accuracy is not chdngleen addingDgu to the
right-hand-side,

Owu = f(t,u) + epDgu. (2.90)

We see that adding dissipation will decrease the amplifinatctor of high frequency
modes. The same argument as above for the advection eqehtiars that

EOES (2.91)

is needed for stability. We apply the sixth-order operatuthbn all coordinate directions
and add it to the right-hand-side of the discretized evolugquations at all grid points.
This is applied to all simulations performed for this thesis

2.6 Simulation Physics

With the tools described in the previous section we can naswewvthe Einstein equa-

tions using one of the formulations described in sec2dhon a relativistic space time

described by one of the initial data formulations describgd?.4. We can the integrate

that system on a numerical grid using finite differenciad.land method of line2.5.2

to evolve our initial data according to our chosen evolusgatem. The primary output

of such numerical relativity simulations are some appratgrand discrete representa-
tion of the spacetime geometry. Now that | have describeddbls necessary to make
such a working code, | need to explain how we extract furthstsizal data from these

evolutions.



Chapter 2: Background 32

Figure 2.4: A diagram illustrating a cross-section of a 3-coordinatepsh(the curvy
line) which is not Strahlkdrper about the local coordinaigia (the central
point). The arrows show rays from the origin which intersiet shape
more than once.

For the sake of analysis and diagnostics one needs to edatcsuch as the motion
of the black holes, the properties of their horizons, andthéted gravitational radiation.
We need to extract these properties from the metric questivaluated in our numerical
relativity code. Further, | will explain how we determinedaprove the accuracy of this
data and of the code itself. In this section | will explain haw extract information from
the simulations in this thesis from the discrete spacetiewaetry given us directly by the
simulations. In the section following this | will explaingtspecifics of the implementation
used for all the described tools, and with that | will be re&algiscuss the results of my
research and the work involved therein.

2.6.1 Apparent Horizon Finder

A key diagnostic for numerical evolutions of black hole sgianes, and a key source of
astrophysical data comes from analysis of the black holedws. Anevent horizorof
an asymptotically flat spacetime is the boundary betweersphaee for which a future-
pointing null geodesics can reach future null infinify This continuous null surface is
definednon-locallyin time [68]. As a global property of the entire spacetimaait only be
obtained as part of post-processing for any simulationégtalves forward in time. How-
ever, for any numerical run it is important to monitor thegedies of your black holes to
make sure you are evolving real physics, without having tibfeathe simulation to reach
completion. For this purpose, we calculate the properti¢isecapparent horizor{AH) of
the black holes. An apparent horizon is defihecklly in time on a spacelike slice, and
can thus be calculated “on the fly” at each time-step in a ctatipmal simulation.

A marginally outer trapped surfacdMOTS) is a smooth closed 2-surface in a slice
whose congruence of future-pointing outgoing null geatkesiavezero expansion®.
There may be several such surfaces, some nested insids.oftreapparent horizoris
defined to be theutermosimarginally trapped surface. That is, it cannot be contained
any other MOTS. In terms of o+ 1 variables, an apparent horizon satisfies the equation

O=Vn'+Kjn'n! —K=0 (2.92)
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for the expansior® of the outgoing null geodesics, whetéis the outward-pointing unit
normal to the apparent horizon, ang is the covariant derivative operator associated with
the 3-metricg;; in the slice [69]. This condition is a nonlinear elliptic P@&ntaining the
3-metricg;; and its spatial derivatives, the extrinsic curvatéig, and the conformal fac-
tor ¢. This outermost surface is coincident with the boundary ‘tfegpped surface” —i.e.

a surface whose future-pointing outgoing null geodesiee hagativeexpansion. The ex-
istence of such a surface automatically implies the exigterfia black hole (given certain
technical assumptions are met, including energy conditaord a reasonable gauge).

To parameterize a horizon’s shape, one method is to ass@hertl can define some
local coordinate origin inside th§? surface such that the spatial coordinate shape around
that point is aStrahlkdrper(or star-shaped region) defined as

a region in Euclidean space containing a surface for whictag$ radiating
from the ’origin’ intersect only one point on that surface.

Thus, the shape in figui24is not a Strahlkérper shape because there is no point inside
the surface for which there does not exist lines which ietershe surface three times.
Given this Strahlkérper assumption we may parameterizeadace by

r=h(0,d) (2.93)

wherer = [, («* — z})?]*/? is the Euclidean distance from the local coordinate origin,
z{, to a surface point, thus : S? — R* describes all points on the horizon surface.

To write the expansio® (2.92 in terms of this parameterization one must define
a scalar function which vanishes on the surfa¢é, ¢) and increases outward from the
origin, ®F = r — h(6, ). We take the outward-pointing normal co-vector to the AH
surface as the gradient &f,
7

5:=® 5, =VOF = 9 — 00 = x? — X 8,h, (2.94)

where the coefficient* = dy*/dz" andy® = (6, ¢). This gives us the outward normal
to the AH surface

_ 5t gis;
= = J 2.95
TS (s 2 (25
which gives us the expansion
© = Vin'+ Kijninj - K (2.96)
gs; g"s; KYs;s;
= 0i————= + 0l - K
s OO (G T T

If we set this expansion to zero and= h we can obtain the shape and position of the AH
surface in terms of the metric, its derivatives and the egitci curvature:

O = O(h, 0uh, Ouvh; gij, Kij, Orgij) = 0 (2.97)

With this equation for an apparent horizon, we then needgorighm to solve this equa-
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tion on the fly in our simulations.

We can use a direct elliptic solver to take the level surfece, 0, ¢) = r — h(0, ¢),
and interpret the horizon equatio®.92 as a nonlinear second order elliptic differential
equation for the functiork(6, ¢). We may simply calculate all derivatives using finite
differences and then apply Newton’s method to solve theltirgusystem. Thus, our
system (as written by Jonathan Thornburg [70]) computesi#tebian/[©(h)] of the
expansior® = O(h) of a trial horizon surface = h(6;, ¢;) from the metric data in the
Schwarzschild/Eddington-Finkelstein metyig and ; ;.

This system, of course, requires a good initial guess toargevon a solutions for
the horizon, otherwise Newton’s method will diverge. There, the initial parameters
must be specified to the horizon finding algorithm where thezbas sit in the initial
data, and what sort of geometry the initial data defines. 8@ #&s the horizons are found
with enough frequency in time-steps relative to the vejooit the black hole through
the coordinate space that the horizon has not moved toodar if's previously known
location between iterations, this system will remain aataiand efficient. Thus we have
a method for tracking the coordinate movement and shapd®dflack hole horizons in
our simulations.

2.6.2 Isolated Horizon Finder

Information such as the horizon spins, relative velociteasd masses can be extracted
now that we know how to solve for the shape and coordinateamaif our black hole
horizons. The notions dkolated and dynamicalhorizons allow us to define the mass
and angular momentum associated with these holes on therfhgdudynamical simula-
tion [71]. This theory works by defining mon-expanding horizoas a null hypersurface
H that is foliated by marginally trapped surfaces. For a atatiy horizon, this means
stacking apparent horizons at spatial hypersurfaces to fonon-expanding world-tube.
An isolated horizormay be defined as a non-expanding horiZzbmhose intrinsic geom-
etry is not evolving along the null generators [72]. Thigais one to use the Hamiltonian
formulation to define our mass and angular momentum.

The formula for the angular momentum of the horizon can beveléwith the as-
sumption that our horizons are axisymmetric, and thus hav&itling vector field

E¢qij = 0, (298)

whereg;; := v;; — s;s; is the induced metric on the horizon for outward-pointingmals
s;. We can then derive the magnitude of the angular momentum fro

1
Jg = — f{ P s KomdA. (2.99)
87T S

This is identical to the ADM angular momentum with the exéapthat it is calculated
on the horizon instead of at infinity.

From the angular momentum and horizon surface we can themabe mass of the
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black hole from the equation

2 :ﬂ 47TJ12_1
H™ 96r = Ay

(2.100)

where Ay is the horizon area. Thus, we have extracted all informatlassically avail-
able from a stationary black hole horizon. We may then usentti®on of adynamical
horizonas aspacelikehypersurfacefd that is foliated by marginally trapped surfaces to
define fluxes and balance laws for mass and angular momentumoriiestationary hori-
zons. Therefore, we can accurately measure the mass andfspim simulated black
holes throughout any simulation.

2.6.3 Gravitational Wave Extraction

The primary goal of numerical relativity simulations is thgtraction of gravitational
waveforms for analysis as template waveforms for graaiteti wave detector detection
pipelines. There are multiple ways to extract the radiadomponent from the numer-
ical metric data. In this section | will explain how we extralie waveforms by using
a Newman-Penrose [73] null tetrad to represent the metrexti@act thel, component
of the Weyl tensor and how we relate that/tp and i, polarizations of the metric per-
turbation waveforms. Second | will show another approactwhich we treath, and
hy as linear perturbations on a Schwarzschild solution toaektthe radiation data via
the Regge Wheeler [74] and Zerilli [75] radiation equati¢ng]. Both of the methods
described in this section were used for most of the black kinheilations discussed in
this dissertation, and have been shown to give comparabldtseo high accuracy (see
Appendix [A.6] for the details of this comparison).

Weyl

While the tensor components evolved in an ADM evolution afdiin’s equations carry
the geometrical information which define the spacetimey tthe not directly provide
an interpretation of the geometrical content of a spacetimhibe problem is that the
tensor components are not coordinate independent, the wdleach component (for
a non-vanishing tensor) can vary arbitrarily with coordénahange. We must calcu-
late several more geometrically defined quantities. Theptexnvalued Weyl scalars,
Uo,¥,¥,,¥3,0, are coordinate independent, but do depend on a choice afitén
orthonormal complex basis for the tangent space of the Spaan which they are eval-
uated. In order to analyze the gravitational radiation peimitted by the simulated binary
system, we must choose a null tetrad to decompose the diawihradiation. This ra-
diation is contained in the Weyl tensdar,,;.;, SO we would like a tetrad that separates
the radiation part of the Weyl tensor from the non-radiattontent. The tetrad is defined
in relation to the numerical grid coordinates, but the r@sylU’s are less sensitive to
coordinate freedom.

The Newman-Penrose formalism was developed to introdunersgalculus into gen-
eral relativity [73]. It gives us a special kind of tetrad @alis based on null geodesics
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through a specified choice of basis vectors. For this dismuse/e choose the following
tetrad: givenr, the time-like unit vector normal to a given hypersurfacd anthe radial
unit vector. Using spherical coordinates we obtain thetketr

T = %(%—m, WE%(%—F?), (2.101)
7= %(é—ié), == (0+id),

where I and 7 are the in-going and outgoing null vectors respectively ahand m
are the complex null vectors with the standard sphericatimet

ds® = —dr* + dr® 4+ r*(d6? + sin*0dy?). (2.102)

The orthogonality relations of this tetrad are

—

T-T = - w=m-m=m-m=0, (2.103)
7.7 W =1

7 = 7 =z = —’>_—> =

I-m = | -m=n-m=n-m=0,

so that in the spacetime metric can be described as
Jab = 2mgmy) — 2n,ly)

In specifying a tetrad of the form2[10] we have reduced the number of degrees of
freedom associated with the choice of orthonormal tetrah %ix to three. The remaining
three degrees of freedom are fixed by specifying the dinestad# and the component of

6 orthogonal tor relative to the local metric. The rest of the components, @, and¢

are fixed by orthonormalization.

The ¥’s are defined as components of the Weyl tenSgy.; which in the vacuum
case is identical to the antisymmetrised Riemann teRsgy;. In terms of this tetrad, the
complex Weyl scalar9 is given by

Ty = Capeq®mlI¢m?
Uy = Copeg®nb1m?
Uy = Cupeal® n®mem?
Uy = Cupean® 1> nem?
Uy = Cupean® mb n‘ md .

Here, the Weyl scala¥ is in-going gravitational (transverse) radiatidi, is the outgo-
ing gauge (longitudinal) radiationl}; is the static gravitational (“Coulomb”) fieldys is
the in-going gauge (longitudinal) radiation, afd is the out-going gravitational (trans-
verse) radiation. Eacflr,, should have a /' falloff.

With a tetrad of the form3.101], these components can be expressed directly in terms
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of spatial quantities.

Ty = Cupm®mb
1

\I’l == ﬁCabmafb
1., .

Uy, = 5 abrarb
—1 —a »b

\1’3 == ﬁCabm T

U, = Cypm®m’

wherem? is as defined abové’,, is the symmetric, trace-free, complex-valued tensor
Cap = Rap — K Kap + K Koy — i€, Vg Kp

given in terms of the Ricci curvaturR,;, of the spatial metric and the extrinsic curvature
K. Only W, is of interest for our purpose here because it contains ttiand radiation
content of the systemW, can be related to the gravitational radiation in the follogvi
way: in the transverse-traceless (TT) gauge, in the cordlhyrfiat limit as we approach
infinity

1

cpp e
1hag —hgs) = —Reprg = —Regeg = — Ry (2.104)
= Rigeg = Bogrg = Bigig s
Lopp
§h(§¢3 - _Rféﬁfb - _Rféfé - Rféfé - Rféfé' (2.105)
We can then set thie;. andh polarizations of the radiation to
S I . epp

Finally, we can use the equality of the Riemann and Wey! tensovacuum, to yield a
relationship betweed, and the radiationR,,ca = Caped(G v = 0), to yield the final
relation betweenl, and the radiation as a metric perturbation in terms of prddions

Wy = —(hy —ihy). (2.107)

The final step in analyzing the gravitational radiation gsin, is to decompose it into
spherical harmonic components. This is a useful way to gaight into the physical
processes at work, as some processes may excite specific,nandetherefore can most
effectively be analyzed individually. For instance, qugmiie radiation emits at twice the
orbital frequency, and so will be constrained to the- 2, = 42 harmonic modes.
Since two factors ofn appear in the definition o4, and each carries a spin-weight
of —1, we decompos@, in terms of spin-weight-2 spherical harmonics,Yy,, (6, ¢)
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given by

(£— 2)!]1/2 [ +

Y0 (0,0) = [ o] [0 O1in(6.6) + 55, O)Yie-1m(0,6)] 2.208)

for I > 2 and| m |< [, and with the functional coefficients

2m? — (L + 1) cotf
+ _ 2m” -+ 1) _,cott B )
Ay (0) = -~ F2m(l = 1) = + (¢ = )cot?, (2.109)
20+1 1/2 m cotf
+ _ ATl 2
Biem) ) =2 [2@— (& -m )] (isme2 + sin9> ' (2.110)

We can now decompose the dimensionless Weyl sdajayielding

[e%s) l
Wi, 7) = 2D S aCon(t) 2Yim(6,9), (2.111)
(=2 m=—¢

where M is the total system mass, amds the radial distance to the binary center of
mass. The Newman Penrose formalism turns out to be an id@aéfwork for perturbative
studies in general relativity. Price first showed tlratand ¥ could be used to described
all non-trivial perturbations of a Schwarzschild blackeénfil8]. Teukolsky showed that
the same is also true for Kerr spacetimes for any arbitrairy [37].

This decomposition assumes a flat space background, an@ sxtifaction surface
of the radiation must be adequately far from the coalesclagkibhole binary to not be
affected significantly by its gravitational potential. $t$ an important consideration in
numerical relativity, as it requires the domain of evolatfor all of our simulations to be
sufficiently large in size that we may choose radiation etiva spheres on which a flat
background metric is not a terribly inaccurate assumption,large grids for numerical
evolutions require a lot of computational power. Thus, aacy requirements and effi-
ciency requirements must be balanced. The area with thedgnatnics is in the region
closest to the two black holes, we require a high grid resoiutear the holes, but as grav-
itational radiation is long wave length and extracted on ediradius sphere, we do not
need such high resolution far out near our radiation extiacpheres. Therefore mesh
refinement is used to layer grid of different resolutions tdch the accuracy requirements
of the different regions of our evolution domain, while nausing exponential drops in
computational efficiency. We will discuss this techniquaéation R.7]

Zerilli

Another approach to extract gravitational radiation datenf numerical simulations is
to calculate first order gauge invariant waveforms from a enical spacetime, under
the basic assumption that, at the spheres of extractionspgheetime is approximately
Schwarzschild. The stability problem for a Schwarzschilack hole in the form of a

perturbation analysis on a “pure metric” was first presertgdRegge and Wheeler in
1957 [74]. One result of this work was the formulation of a gatransformation that
allows a complete radial/angular separation of the Einstgjuations for even and odd
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parities. So for some perturbation the Einstein equations

6Guy = ORuy =oT0, —T0 2.112)
A 1 .
oy, = §gll(hjl,k + hitj — hjkg) (2.113)

whereh < 1 is the perturbation tensor, ard’, §R, §G are the perturbed parts of the
affine connections, Ricci, and Einstein tensors.

The Regge-Wheeler and Zerilli equations each describe btigeawo degrees of
freedom of linearized gravity as it propagates in a black balckground. Odd-parity per-
turbations are governed by the Regge-Wheeler equatiorg\ardparity perturbations by
the Zerilli equation. Odd-parity perturbations are ofteferred to asxial perturbations
because they drag the inertial frame and thus cause ratafiean-parity perturbations
are often referred to golar perturbationsas they cause no such effects.

To begin we assume a spacetimg; which can be written as a Schwarzschild back-
groundy ¢ with perturbationsh,s:

Yap = Vag ™" + hag (2.114)
with
-S 0 0 0
St 0 0 oM

{(v55ver=y(t,r,0,4) = S(r)=1- =2 (2.115)

0

0o 0 1 0
0 0 0 7r%sin®0

Since we are considering perturbations in which the backgiespacetime is expressed
by the Schwarzschild metric it makes sense to expand tharpations in spherical har-
monics. The three-metric perturbatiops can be decomposed using spherical harmonics,
Yom into y/7"(t,7) where

o) 14
vij(t, 7, 0,0) = Z Z 'yém t,r) (2.116)
(=0 m=—¢
and
vij(t, 7,0, 0) = Zpk (t,r)Vi(6,9) (2.117)

where{V}} is some basis for tensors on a two-sphere in three-dimegiskunclidean
space. In Schwarzschild coordinates, the Regge WheeleZarill equations may be
written

) — 92wl 4 vl = gl (2.118)
o2 w %—83 W rvie %:g@;g, (2.119)

respectively, where&(©) is the Regge-Wheeler source functigi®) is the Zerilli source
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function, V, °) areVé(e) are the Regge-Wheeler and Zerilli potential functions.nlm)l(fg
and¥®) we obtain the gravitational wave amplitude

Ilm

. 1 L+ 2)! (e o - 1
hi —ihy = ZZ N Ef . 2;! (W) wlohy Ly im(g, ¢) + O(3) (2.120)

Working backwards we can use this formalism to extract theitational wave data from
Regge Wheeler and Zerilli-Moncrief wave equations theypbetions from Schwarzschild
on some extraction sphere according to even and odd hargonic

Working with the Regge-Wheeler basis the three-metricas ttxpanded in terms of
the (six) standard Regge-Wheeler functigfg ‘™, 5™, b, H ", K+om GHim)
[74], [76]. Where each of the functions is eithmdd (x) or even(+) parity

W= G+ @)+ R
+ APHST(f) + REKTON(f) G+ RPGT ()i (2.120)

which we can write in an expanded form as

v = APHFY, (2.122)
1
1 = = Yo+ b Yim g (2.123)
Yoy = S0V omp + B Y om g (2.124)
1
W = " (Yimgo — €0t 0¥ g) + BK Yoy + R*G "Y1, 2.125)
1 1
¢ tm
WGZL = —C; ™ sin 95 (nmﬁe — cot HYVZm,G - mnm> (2.126)
+R2G+gm(}/gm,9¢ — cot HY'gm,d))
Yoy = —sin 0" (Yo s — 0t 0Vpn 5) + RZK T sin® 0y, (2.127)

—{—RQGHm(ngW + sin 6 cos 0Ypr, )

A similar decomposition allows the four gauge componenthefour-metric to be writ-
ten in terms othree even-parity variable§ Hy, H1, ho} and theone odd-parity variable

{eo}

W= N2H{""Yi, (2.128)
W= H{Y, (2.129)
1
W= g Vi — " Yim (2.130)
WP = R Y+ e sin0Y (2.131)

We can also get the lapse from = —a? + ;3. We have

1
afm = —§NH0+£’”ng. (2.132)
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To distinguish Zerilli and Regge wheeler modes it is usefualso write this with the
perturbation split into even and odd parity parts:

Yo = background + Z nym ,0 + Z ,Yém e

where (dropping some superscripts)

0 0 —cosig Yom,o cosin Ym0
{,}/o } — 0 —C1 snllgyvémzﬁ C1 Sin@y’ém@
o sm9 (nm 00 — cot anm (15) €23 (sm@nm el + cos enm 0 sin anm 69)
c2(—sin Yy, 66 + cos 0Y i, o)
N2HoYem  H1Yem hoYem.e hoYem,¢
A?Ho Yy, h1 Ym0 h1Yem, ¢
{vast = : : R2K Yy, + 12GY 00 R2(Yim 06 — €Ot 0V, )
. R?K sin® 0Y,,+

R2G(Yom, ¢ + sin 6 cos 0Yey, o)

For such a Schwarzschild background we can define two unmeamst gauge invari-
ant quantities = Q) (¢, eX™) and Q). = Q; (K+0m Gtim HFtm pitmy)
which from [78] are

2(1 +2)! 1 2 S
Qi = % -1(+2) i )(z1)+ 2) (4r ks + 101 + 1)rks) (2.134)
= % 2(ll—(ll—4)r(l1)+2) (l(l +1)S(r?9,GT™ — 2n M)+ (2.135)

2rS(HS ™ — rd, KT0m) + ATKM’”) ,

where

k= KTm4 %(V«Q@GM’” — 2n M) (2.136)

ky = 215 {H”m — rOpky — <1 — %) ki + SY20,(r28Y20,GFm — 2812 Hmy
= 215 {HQ - %K} . (2.137)

These quantities only depend on the purely spatial Reggeeighfunctions, and not the
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gauge parts. These quantities satisfy the wave equations

(63—63*)sz+5{l(l;1) —i—j\ﬂ S = 0(2.138)
3
(07 — 07)Qp, + 5 [% (%— (2.139)
M M 1(1—1)( !
1i3 (-1 +2) (1—37>>+ ( 1)(;;)( +2)} P
where

A = (I-=1)(1+2)+6M/r (2.140)

= r+2MIn(r/2M —1). (2.141)

We assume that the numerical solution, on a Cartesian grghgroximately Schwarzschild
on the spheres of constant= /(22 + y? + %) where the waveforms are extracted. The
general procedure is to then project the required metrigpoorents, and radial derivatives
of metric components, onto spheres of constant coordiaalies. This radius should be
sufficiently large that Schwarzschild approximation does cause errors significantly
above numerical error. We may then transform the metric @orapts and their deriva-
tives on the selected two-spheres from Cartesian cooadiniato a spherical coordinate
system. We can calculate the physical metric on these splf@reur known conformal
factor. We must then calculate the transformation from ta&dinate radius to an areal
radius for each sphere. The areal coordinaté each sphere is calculated by

R R 1 1/2
T =7r(r)= [E/,/fygg'qudﬁdqﬁ} (2.142)
from which i )
a_ L[ 20660 £ 060060 4pq, (2.143)
dn 1677 NaTTR
From there we can calculate tlsdfactor on each sphere. Combined with the areal radius.
. 7\
S(r)=| =— Ve dOd (2.144)
or
This also produces an estimate of the mass.
1 —
M(7) = i— & (2.145)

We can calculate the six Regge-Wheeler variables, andrestjtadial derivatives, on
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these spheres by integration of combinations of the medricgonents over each sphere.

1 7Y im0 — V76 Y g
Cidm _ /’Y oLy ,9. DRY ’¢dQ
I(1+1) sin
2 1 1
xfm . *
= - - oY,
E I+ -1)(+2) / { ( sin20 1% s 9””) (Sin 600

— cosOYy, ;) + 679¢(ng 9o — cot Yy, o — sin? HYzm (;5(;5)} a2

1 1
h”mzi/ oY v Lo
1 l(l—|—1) {79 Zm,0+ Sin297¢ Zm,qb}

Hf™ = S/wag;ndQ

1
1 Vb * .
* 272(1 = 1)(1 +2) / {<We  sin? 9) (Yem,ee cot O¥m,g

1 4 . .
mnm,¢¢> + sin2 979¢(nm,9¢ — cot anm,qb)} df2

! Yoo
f2l(l + 1) -1 +2) {(fwe sin2 9) ( tm,00 — CO tm.,0

1 4 . .
T2 Hyzm ¢¢> + 20 Q’Y%(Yzm,w — cot 9Yém,¢>)} dQ
where
or or or or
= A~ ITT 70 — "~ 1rl rd — S~ Ird - 2146
7 ok o) Vo = G0 e = prre (2.146)

From here we can construct the gauge invariant quantities fhese Regge-Wheeler and
Zerilli variables

X 2(l + 2)' 1 xfm 2 xfm S
Qun = =] [c 5 <87:62£ — Tczz >} = (2.147)
2(1 — 1)(I + 2) (47S%kg + 1(1 + 1)7ky)
Qi M+ (—D0+2) t6M/i° (2.148)

This formalism is convenient as it gives s and hy already decomposed intband
m modes with no extra integration stages required. This isséulisvay to gain insight
into the physical processes at work, as some processes iy specific modes, and
therefore can most effectively be analyzed individuallyor Fhstance, quadrupole ra-
diation emits at twice the orbital frequency, and so will mnstrained mostly to the
¢ = 2,m = £2 harmonic modes. This is also a convenient formalism in thgt W
we can extract a mass estimate calculated fyggman estimate of ADM mass enclosed
within each two-sphere, and an estimate of momentum at eamisfithere. In Chapter
[5] I will discuss the relative advantages of each of the twitg#ional wave extraction
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methods presented in this section.

2.6.4 Proving Well-posedness
For a system of partial differential equations of the form
Ou = P(D)u, (2.149)

where some:-dimensional vector-valued functian and spatial derivative operators de-
fined by D, theinitial value problem (IVP) corresponds to finding a solutio(t, ) start-
ing from some known initial data(t = 0,z). The concept of avell-posedproblem,
introduced in 1902 by Hadamard [79], is generally undeidtoosatisfy three criteria:

e a solution to the problem exists (existence)
e the solution is unigue (uniqueness)

e the solution depends continuously on the intial data (stgbi

We may define this third condition of well-posedness for tlaei€hy problem as the fol-
lowing [80]

A system of partial differential equations is called wedlspd if there exists
constantsi and «, independent of the data, that satisfy

| u(-t) |< Ket [ u(-,0) | (2.150)
for all ¢ > 0, where| - | is the norm of the function.

That is to say that the norm of the solution can be bounded &dgdime exponential for
all initial data.

Attempts to solve ill-posed problems in numerical simwlas will result in unstable
solutions, thus well-posedness is not only a mathematmadition, but also significant
for formulating a functioning numerical code. While mostypital problems naturally
give well-posed evolution systems, it is not difficult to firather simple systems which
are not well-posed. One example which closely relates tptbllem of the3 + 1 evolu-
tion equations is the simple system:

O = Mogu, M = ( (1) i ) . (2.151)

If we consider the evolution of a single Fourier mode, andsaer the solution
uy = (ikAt + B)e*t+a) gy = AethltFe) (2.152)

where A and B are constants, we see that is oscillatory in time and, thus, clearly
bounded. However;; has an additional linear growth. As the solution cannot hended
by an exponential independent of the initial data, becaumseoan always choose fa
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large enough to surpass such a bound, we must then declaselthienill-posed Such
solutions can often appear in 3+1 solutions in numericaitirety. Thus we wish to be
sure we choose a category of evolution equations with soistivhich are always well-
posed. One such category of partial differential equatiehich can be shown to be
well-posed under arbitrary conditions are callggberbolic

Hyperbolicity is a necessary condition of well-posedneasstlie Cauchy problem.
Hyperbolicity is a condition on the matrix of spatial detivas A% in the first order
system

du = AYVu + B(u). (2.153)

If all eigenvalues forA are real and4d has a complete set of eigenvectors, we say that
the system istrongly hyperbolic If all eigenvalues forA are real butd does not have

a complete set of eigenvectors, we say that the systemedkly hyperbolic It has been
shown that strong hyperbolicity is equivalent to a strirtggondition for well-posedness
[81]. This concept may be intuitively understood as a rezjugnt that systems behave
as generalizations of the simple wave equation, that haweitbperty of having finite
propagation speeds, and thus a finite past domain of depesiden

If a system is strongly hyperbolic one can always find a pasitiefinite a Hermitian
matrix H (n;) such that

HP - P'H' =HP - PTH =0, (2.154)

whereP := A'n, for some arbitrary unit vectot;. With this symmetrizef we then get
a complete set of eigenvectors
Pe, = \eq (2.155)

with eigenvalues of\,. We may say that a systemsgmmetric hyperboliif all A* are
symmetric (i.e.H is independent ofi;). Symmetric hyperbolic systems are, thus, clearly
strongly hyperbolic, but not all strongly hyperbolic systeare symmetric. We can then
also definestrictly hyperbolicas one for which all eigenvalues of P are both real and
distinct for alln;. This implies that the symbdP may be diagonalized and automatically
strongly hyperbolic.

The importance of the Hermitian symmetrizer in showing vpelsedness is related to
the construction of the inner product for solutions of odfedéential equations

(u,v) :=ul Ho, (2.156)

| u|?:= (u,u) :=ul Hu

which gives thesnergy nornfor our system of equations. Thus, if we can show that there
is a bound on this energy norm, we show that our system ispesied. This tool has been
used to show well-posedness for all systems in this thessoime given assumptions.

A major criticism of the ADM formulation of the Einstein edi@ns is that the evo-
lution equations in this system are only weakly hyperbatiecept under very specific
conditions. However, stable and convergent results haga bed continue to be pro-
duced in the BSSN system by applying a system for constraimipihg to the right hand
sides of the evolution of the extrinsic curvature equatiang by applying dissipation to
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Figure 2.5: A diagram illustrating the use or artificial time-like outasundariess? in
spacelike slices of the evolution domain,

the evolution system. One major advantage of the harmonmuiation of the Einstein
equations is that the evolution equations in this systermagfestly strongly hyperbolic.
However, gauge specification is less intuitive and tectesgguch as the moving puncture
intial data are more challenging to implement for harmowides.

2.6.5 Boundary Conditions

To accurately study the asymptotic behavior of isolatedesys, one needs to approach
infinity. However, as a computer can only differentiate adéimumber of points in a finite
amount of real time in the simulation of such numerical systeto deal with the finite
memory of real computer clusters, we must operate on a finiteber grid points. The
simplest and most common approach to this problem in nualeedativity is to truncate
the computational domain we wish to evolve by introducingadificial time-like outer
boundary at a finite distance from the region of interest inemolution. The injection of
this artificial boundary introduces an intial boundary eapiroblem (IBVP). That is, we
must solve the problem of well-posedness for this truncsystem if we want to maintain
a hyperbolic reduction of the Einstein equations which resiavell-posed. This is a
problem to both the mathematical and physical correctnedsemumerical solution, as
well as a problem for numerical accuracy. In order for thigfiaial boundary to work we
need a boundary that:

1. controls incoming radiation,
2. are compatible with the constraints,

3. and are well-posed.

Point1. means that the simulation outer boundaries must be norctieleand not intro-
duce artificial in-going modes. Poit means that those boundaries must also correspond
to the same condition as the full system that the constrai@sanishing. Finally, point

3. means that a unique solution must still exist which is cardirsly dependent on the
initial data for the full system including the outer bouridar
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Generically, for such a set of artificial boundaries, thdéyse we have is that the met-
ric, g is calculated on a manifoldy1, with boundarySU7 and an edg& = SN7, where
S and7 are space- and time- like hypersurfaces respectively fand intersect on the
spacelike hypersurface. We will assume thatM, g) satisfy some global hyperbolicity
and all fields to be smooth.

The first artificial outer boundary treatment has thus fang@eposed which satisfies
all of the above requirements for the fully nonlinear systeas proposed by Friedrich
and Nagy in 1998 [82]. However, this system is very specifitary hard to implement
numerically. There do also exist alternative approachdmiie radius artificial bound-
aries. It is possible to compactify one’s domain of evolutio include spatial infinity by
a transformation of coordinates. However, given a finite benof points there could be
some numerical error backscattered by the increasing elsangesolution, and the dissi-
pation and damping required can often generate as muchasrantificial boundaries for
an even less efficient system. Another approach is to choekeireg condition with the
coordinate transformation to instead include null infinifyhis problem remains a work
in progress in the field of numerical relativity. Thus, thmglest approach remains the
standard: timelike artificial outer boundaries.

In order to simplify the problem of obtaining well-behavetlfecial outer boundaries,
we may make some assumptions and assign some basic coandfior wants an outgo-
ing radiation boundary condition at an artificial outer bdary for the simulation domain
that is at a sufficiently large radius

e to be causally disconnected from the highly dynamical pafrte simulation,

e which would allow for enough far-out wave extraction radiigccurately extrapo-
late the gravitational waveform at null infinity,

e and which is far enough out to allow for a perturbative treaitrfor the bound-
aries without becoming reflective, ill-posed, or intenfigriwith the physics of the
simulation.

Given a boundary at such a distance, we may consider a lmeebapproximant of the
Einstein equations for the outer boundaries of our numiesicaulations. Most astro-
physically realistic spacetimes are asymptotically fldtisTmeans that at large distances
from the black holes (or neutron stars or other object of@#® the spacetime is flat plus
some perturbation that falls off agr. These perturbations may be waves, gauge modes,
or constraint violating modes that arise from numericabessrwhich need to be able to
smoothly leave the evolution domain without backscattgeon causing further violation

of the system constraints.

In the past few years there have been many such “linearizedhdary treatments
proposed. Many of which maintain well-posedness and rethamening artificial radia-
tion. In 2006 Kreiss and Winicour proposed a method for thentdmic reduction of the
Einstein equations that is well-posed and constraint pvesg for the 1st order system
[83] without requiring linearisation, only assuming thia¢ tooundaries are in the constant
coefficient limit. In 2007 Buchman and Sarbach proposed ancapmation that works
by studying the reflection from a Psi-freezing constraimtsprving outer boundary for an
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analytic problem and then subtracting those modes for gporeding modes in simula-
tions [84]. Similarly Rinne proposed conditions for thetfiosder harmonic system that
control incoming radiation by specifying data for the indogfields of the Weyl tensor

[85]. In this thesis | propose two more sets of well-posedst@int preserving boundaries
for the 'Generalized harmonic’ and BSSN evolution systems.

In standard simulations we often use much simpltocconditions, simply using
the fact that the boundaries are far enough away to be cawdiaionnected from the
simulation. This, of course, limits the time that the sintiola can remain accurate in the
region of interest before it is saturated by noise from theiooundaries, and pushing the
boundaries far away is extremely computationally expensso the use of accurate, well-
posed, and constraint preserving boundary conditionsrbesanore necessary as modern
simulations become more stable and more often requiredialaie longer physical times
with greater accuracy and efficiency, so to be completed @aaanable amount of time.

For simulations with causally disconnected outer bourdaa simple “naive” bound-
ary condition used in many primitive simulations are caltadiative boundary condi-
tions, called such because it allows incident radiationde 8moothly out of the simula-
tion grid. Suchad hocconditions work on the assumption that far away all fieldsaveh
a outward travelling spherical wavgs~ f(0) + u(r — vt)/r. An example of a radiative
boundary condition is

(r — ot) N h(r + vt)

f=fo+2 (2.157)

for some outgoing and in-going functionsandh, and wave speed, and assuming &/r
falloff for outgoing waves. This leads to the differentigjuation
' Of of  wva' v’

75 +U8$l + r2 (f_fO) =H r2 (2158)

wherex! is the normal direction to the boundary, aHd= 2dh(s)/ds.
These radiative boundary conditions work under the assongthat:

1. the spacetime is asymptotically flat,

2. the sources of the gravitational field are localized in alsneighborhood far from
the boundaries,

3. the shift is small enough at the boundary location thatadtaristic speeds may be
neglected,

4. all fields move at or below the speed of light,

5. and there are no in-going fields at the boundary location.

Even if all of these assumptions were perfectly valid, sumhditions do nothing to en-
force preservation of the physical or coordinate condsaifihus, even in an ideal, shift-
free, linear wave-toy case it would be important to placeltbendary far enough away
to prevent incoming constraint violations from the bourydtom interfering with the
simulation results.
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In addition to the problem o&d hocconditions causing violations of the physical
and coordinate constraints, the second important quekitiostability and accuracy of
artificial boundaries is that of well-posedness. In the tinsequations we have source
terms, but these are typically quadratic in quantities tlhap off to small values at large
radii, and can be ignored at the boundaries. Also, not atlsiei the Einstein equations
propagate with the same speed, and thus we must be careful @moice ofv. However,
in the BSSN system all eigenfields propagate along timelimes the gauge speed. We
can thus assign all speedslt@xcept the conformal factor and extrinsic curvature. For a
second order ADM type reduction of the wave equation (andHerEinstein equations)
we find that radiative boundary conditions are not well-poisethe spatial derivatives of
the metric.

If, as in Section2.6.4, we consider an evolution systems such as
ou = MOy, (2.159)

where we constrain the domain of dependence to the régian?, and construct a prin-
cipal symbolP(n;) = M'n;. If we again assume that the system is symmetric hyperbolic
with a Hermitian matrix such thaf P = P” H then taking the energy norm gives

E(t) = / ul HudV (2.160)
Q
and taking the time derivative, we obtain
& _ / O (ul H M u)dV . (2.161)
dt Q
Finally, by applying divergence theorem we obtain

aw_ / (u' HM'u)n;dA = — / (u' HPu)dA . (2.162)
dt o0 o9

Thus, the well-posedness of our problem depends on the ftaxngh the boundargs2,
and incoming fields must be bounded to have a bound on theyegength of the system.

Boundary conditions in which one sets the inward eigenfipldgortional to some
small factor,S, times outward eigenfields are callegximally dissipativdoundary con-
ditions. We can generalize these and add some predefinetiofuriar incoming fields,
g(t). If Sis set to zero we call thestommerfeld-typboundary conditions$ = —1 are
called Dirichlet, S = 1 are calledNewmann typdoundary conditions. Newmann and
Dirichlet are reflective conditions fgy(¢t) = 0. Thus, Sommerfeld-type boundaries are a
natural choice for unknown and assumed to be negligibleniicg fields. More gener-
ally, one may need to consider fields tangential to the bayrakawell, in order to obtain
well-posedness. This will be discussed in Sect@][

Additionally, many physical simulations allow some symriest, which may be ex-
ploited to simplify the problem and improve computationfiiceency. For example, it
might be possible to simulate a rotating star by ‘slicingg $pace in half through the
equatorial plane, simulating only one half, and placingfi@cdon boundary condition on
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the slicing plane, and thus we only have to evolve the sinmdbr half the number of
grid points. Additionally, we might want to assume that stisr has rotational symmetry
about the axis of rotation of the star. In that case, it wodsbfficient to simulate only
one half of the¢p = const plane of the star, and we only have to evolve one fourth o
the simulation grid points. To increase efficiency in sintiolas we often take advantage
of this in our choice of boundaries for the simulation domailithin a simulation we
may apply different conditions to different boundary fac&otating or reflectivesym-
metryboundary conditions may be applied on some faces, and oliysigal boundary
conditions on the other faces.

In Chapter 8] | will discuss boundary conditions | developed for the set@rder
harmonic formulation of the Einstein equations, which asthlwell-posed and constraint
preserving, and show that these improve constraint praseny accuracy and stability
over the bulk domain, relative to simple naive Sommerfgfaetboundaries. | will also
present a set of constraint-preserving boundary conditionthe BSSN system.

2.7 Running Numerical Simulations

As is clear from the abundant amount of background inforomatequired to explain the
workings of the numerical simulations involved in this tisest is clear that the execu-
tion of 3D relativistic numerical simulations of black hapacetimes is a daunting and
involved task. The focus of my work for this dissertation haen on the performance, ac-
curacy, and well-posedness of such simulations, followepdrameter studies performed
with this code with an eye on use of waveforms for GW detecéda dnalysis. In order to
perform the simulations involved here, and test the metipodgosed, | used the Cactus
computational toolkit.

The only codes | have myself contributed to in a significantipo (or all) of the
development of are: the averaged ICN scheme, the initia slaitver for Trumpet initial
data, the mass solver for puncture initial data, the coimstpgeserving BSSN boundary
conditions, the Padé extrapolation scheme for excisioizdios, and most significantly
the SBP and constraint preserving SBP boundary conditimnth& Harmonic reduction
of the Einstein equations. In much smaller proportion, lehewntributed to: the devel-
opment of the AEIHarmonic code for harmonic evolutions dreldhoice and implemen-
tation of gauges therein. AEIHarmonic was the project ofaB&tilagyi and his support
in the encouraging implementation of my boundary condgimrhis code was invaluable
[40].

The BSSN evolution codes | used were developed by Miguell#é&ue, Bernd Brug-
mann, Gabrielle Allen, and Denis Pollney [86, 87]. The Pureinitial data solver was
written by Marcus Ansorg, Erik Schnetter, and Frank Loeffllee PN initial data solver
was a group effort described in [88]. The symmetry, intesfioh, input and output, and
coordinate algorithms are a major part of the Cactus cortipatd toolkit described in
[89-91]. Finally the mesh refinement code used is a packdtpglcaarpet and was de-
veloped and heavily supported by Erik Schnetter [92, 93].
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2.7.1 Cactus and Carpet

The Cactus computational toolkit is a modular componesetiacomputational frame-
work for the development of applications for the solutionmgbex multi-physics com-
putational problems. The Cactus framework consists of araleimfrastructure called
the “flesh”, which consists of a module manager; and the compts called “thorns”
which can perform tasks such as setting up a computatiomd| ggtting up coordinate
systems, defining boundary and initial conditions, solvyiagtial differential equations,
and generating input and output. The Cactus ComputatiovalkiT provides a standard
set of distributed thorns (such as grid setup, input andut@pd most of the previously
listed functions) to provide basic functionality for thegon of computational physics
problems.

Cactus provides the basic parallel framework that supmat®ral different codes
in the numerical relativity community used for modeling diaholes, neutron stars and
gravitational waves. The code employs a 3+1 decompositicheEinstein equations
described in Sectior2[3 from [26,94]. The equations are discretized using fourtieo
finite differences described in Sectio®.%.] with adaptive mesh refinement and using
Runge-Kutta time integrators explained in Sectiarb[].

The time evolution equations are formulated using a vanatiie BSSN formulation
described in [95] and coordinate conditions described i8] Ed [60]. These are a
set of 25 coupled partial differential equations which arst forder in time and second
order in space. The most important variable describing dwgtry is the three-metric
g%, which is a symmetric positive definite tensor defined evéssne in space, defining
a scalar product which defines distances and angles. Thecoodgins the formulation
and discretisation of the right hand sides of the time elmiuéquations. Initial data and
many analysis tools, as well as time integration and pdizdtéon, are handled by other
thorns already in Cactus. The current state of the time &wolui.e., the three-metric
¢"7 and other variables, are communicated into and out of Caisiing a standard set of
Cactus variables. Thus it is possible to use various pr&tiegi Cactus thorns with the
thorns written for this thesis, such as initial data sohzerd analysis tools.

Cactus provides infrastructure components for storagdlimay) parallelization, mesh
refinement, and I/O methods are implemented by thorns inaimesvay as the computa-
tional physics thorns. Carpet [93] is a driver developed bl Echnetter that implements
Berger-Oliger mesh refinement [96] to set up the computatigrid variables used in the
simulations in this thesis. Carpet ‘refines’ parts of theudation domain by factors of two
at prescribed distances from prescribed centers. Thusiatiaus to place high resolution
grid around the areas of interest in our simulation, whilehang low resolution grids
in the outer areas of the simulation where spacetime isivelatflat and approximately
linear. This significantly reduces the required memory amthputational time for our
simulations.

With these tools, | was able to implement my methods derinegtie following Chap-
ters as 'thorns’ and run simulations of a variety of initiata, including binary black
hole simulations. | was able to run these simulations wittiaindata derived from quasi-
circular and post-Newtonian solvers in cactus and Mathieanatspectively to simulate a
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wide variety of binary black hole initial parameters somevbich are described in Table

[4.2).

2.8 Outline of Thesis

This background section should provide enough foundatiamtlerstand the research |
have performed for this thesis:

e In Chapter B] | will explain the derivation, implementation and testiof a set
of well-posed constraint preserving boundary conditiomskioth the BSSN and
Harmonic evolution systems described in sectidh8.§ and [2.3.3. The back-
ground for the details of well-posedness and the approaeftificial boundaries
this section may be found in SectioR.§.4 and Section 2.6.5 respectively. The
discrete nature of numerical simulations described inigest2.5.4 and [2.5.1]
should provide the background necessary to understandnih@riance of proving
stability for the fully discrete system as well as for the thamum solution. | will
show the results of tests which clearly show the advantafyeslbposed boundary
conditions and differencing techniques for efficient nuicarsimulations of any
relativistic spacetimes.

e In Chapter §] is discuss the results of a study of the parameter spacenafbi
black hole simulations (spins and mass ratios). Simulativere strategically run
in sequences with data throughout this parameter spacextydeted the final spins
and recoil velocity for these simulations and fit to this datphenomenological
formula to predict the final spin and kick of a merged blackehivbm arbitrary
binary initial data. The background provided in sectiofdl][ [2.2], and all of
[2.6 should provide most of the background required to undedstae work in
this chapter.

e Finally, in Chapter §] | will discuss the use of the waveforms extracted from the
simulations described in Chaptdi fo determine the effect of black hole spin on the
signal to noise ratio of waveforms in various gravitationave detector pipelines
for a range of detectable binary masses. | will also disdussise of similar wave-
forms combined with post-Newtonian inspiral waveforms tafset of analytical
inspiral-merger-ringdown waveforms to take into accoupih ffects in binary in-
spiral and merger.

I will conclude this thesis with a summary of my findings fot af the aforemen-

tioned chapters, and ideas on how to progress and futureodutFollowed by relevant
appendices for the results chapter and a bibliography efeates.

2.8.1 Units and Notation

First, a note about units before | go into a discussion of nsulte and research. Unless
otherwise noted, geometrized units are used throughautttbsis. This mears = ¢ =
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1. This allows us to express any observable quantities ingerihthe total mass of the
system,M, given that all observables for the black hole binary soluscale invariantly
with the total system mass. Two convenient conversion fa@eel M, = 5 x 1076 s
for time measurements andV/, = 1.5 km for distance measurements.

Greek indices are used to indicate a spacetime quantityreakdkoman indices indi-
cate a purely spatial quantity. This distinction is also enading a preceding parentheti-
cally enclosed superscript of “3” for spatial quantitieslda” for space-time quantities,
for example,® gi; and W guv, respectively. However, in cases such as the examples
given where the index convention specifies the dimensignafithe object and no fur-
ther identification is needed, the superscript is omitteldoAthe metric signature will be
(=1,1,1,1).

Partial derivatives are interchangeably deno@éd 0; f, or f; depending on conve-
nience and clarity.
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Chapter 3

Boundary conditions

The box was a universe, a poem, frozen on the boundaries arharperi-
ence.

William Gibson

In numerical relativity, one commonly solves the Einstejuations in a bounded do-
main, and the question is then born about what boundary tionsliought to be provided
at this artificial outer boundary. As explained in Secti@®b[g, specifying boundary
conditions continues to be a challenge in numerical retgtim order to obtain a long
time convergent numerical simulation of the Einstein eiguatin domains with artificial
outer boundaries. The particular conditions that are esfibideally satisfy a number of
properties. Most importantly, in order to ensure stabitifjthe system, they should be
compatible with the interior evolution equations so that thscretised system forms a
well-posedinitial-boundary-value problem (IBVP). Secondly, theysld take into ac-
count the fact that Einstein evolutions always involve ¢@ist equations as well as time
evolution equations, and satisfy the constraints at akk$inOtherwise, constraint viola-
tions introduced by the boundaries are likely to drive thel®wion away from an Einstein
solution. Finally, the boundary conditions should be cotipawith physical and numer-
ical considerations affecting the accuracy of the solutitrey should be transparent to
outgoing radiation, and restrict the amount of spuriousinicig radiation from beyond
the computational domain, which is assumed to contain di@ftlynamics of interest.

Finding appropriate boundary conditions that lead to a-peded evolution system
and maintain preservation of the constraints of the systeadifficult problem. It has
been a subject of intense investigation in recent years aadé&en a major focus of my
thesis research. In this chapter | present well-posed i@nspreserving boundaries for
the harmonic formulation, and a stable and constraint pragesystem for conformally
flat spacetimes in the BSSN formulation (introduced in int®ec[2.3]) of the Einstein
equations in 2nd order form. | present the derivation of¢t@mditions, prove mathemat-
ically their well-posedness, and for the harmonic systeatiddv with thorough test of the
well-posedness, convergence, stability, and constragggpvation of these conditions in
numerical simulations of non-linear spacetimes.

55
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3.1 Boundaries for the Harmonic Formulation

One of the challenges of numerical relativity is choosingrenfalism to write the field
equations that allows for long-term stable numerical ev@fu In Section 2.3.3 | show
the derivation of the harmonic coordinate conditiai;* = 0 for the Einstein equations
and explained why they are a practical set of evolution egustfor numerical relativity
simulations because, when written with this condition isguh they take on a mathemat-
ically appealing form such that the principle part of thelation equations takes on a
manifestly symmetric hyperbolic form, and the principletpaf each PDE satisfied for
each metric component,, becomes the scalar wave operdtay,,, allowing for a clear
existence and uniqueness proof. This system gives us fourcoastraints in addition
to the physical (momentum and Hamiltonian) constraintshanform of the coordinate
conditions. As the unbounded harmonic evolution systenoéfan well-posed solutions,
what is left is to derive well-posed and constraint preseyset of conditions for the
imposition of artificial outer boundaries. In this sectiowill explain the derivation, im-
plementation and testing of boundary conditions formuldte the 2nd order harmonic
formulation of the Einstein equations on a finite differesh€artesian grid.

The approach which I introduce in this section is partiallyigded from a method first
discussed in a series of related papers by Kreiss, Winiaalicallaborators in [47,83,97],
combined with the summation by parts (SBP) energy methaigéed in Refs. [98—100].
By deriving energy estimates for the semi-discrete syst&nguhe “summation by parts”
rule [3.1.3, one can ensure well-posedness [99, 101-103]. By apphyiisgapproach to
boundary conditions which are radiation controlling andstoaint-preserving, | am able
to construct an IBVP which satisfies all of the above condgio

The conditions are derived for a harmonic formulation offivestein equations which
has been implemented in the code described in [40, 104] Wéthelp of Bela Szilagyi.
The evolution equations of the formulation, given expljcih Section R.3.3, are first-
order in time, second-order in space. | approximate thesatiems using standard finite-
difference techniques, however to ensure a well-posedadestBVP, | have worked out
finite-difference operators for this system which satisiyy summation by parts property.
Since the computational domain uses Cartesian coordinatascube, | have had to de-
velop consistent operators for the corners and edges, ashobbwing the developments
of [83,105] and [43, 106], | was able to construct boundamditions of a Sommerfeld
type, which are both well-posed and satisfy both the Einstad harmonic constraints.

| have used the newly constructed boundary conditions innaben of practical tests
and found them to perform extremely well in comparison witeo standard techniques.
Test evolutions include linear and nonlinear waves. In eade, the new boundary con-
ditions are found to be more transparent to outgoing wavesjedl as better at reducing
the overall constraint violations on the grid. Further, ¢ltelutions are stable against per-
turbations by high-frequency constraint violation (“redisadded to the data, providing a
strong demonstration of robustness. Tests were also doiaftk hole space-times. For
head-on collisions and inspiral, the boundary conditidrsaged improvements in reduc-
ing reflections and constraint preservation, and thus isgatdhe waveform accuracy. |
published many of these results in [107].
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3.1.1 Discretization

| start by introducing the system of evolution equations ancherical setup to which |
wish to apply the proposed boundary conditions. The nurakiicplementation of the
harmonic evolution equations in second differential oidespace and first order in time
form (2.46:2.47) from Section 2.3.3
~ UV th ~ LV 1 v
oG = —E@‘g“ + ﬁQM ) (3.1)

it gt it ~
A" — —&, (<g“ - %) aw) 5 (%Q“”) (5,09, F,0F), (3.2)

follows the “method of lines” approact2[5.4, which applies to systems which can be
cast in the form of an ordinary differential equation contag some spatial differential
operatorL,

rq = L(q). (3.3)

The time integration can be carried out using standard rdstrsuch as the Runge-Kutta
algorithm described in Sectio2.b.2.

While it is possible to reduce this system to first order incgpand time, it may not
be a practical in numerical simulations. A reduction to faster in space increases the
solution space leading to new constraints which must befiati during the evolution,
and thus to more space for inaccuracy. Thus, | keep the syst¢eond order in space
and derive differencing stencils which obey the SBP prgpartd allow us to derive a
well-posed semi-discrete boundary value problem.

For the system of interest in this thesis spatial derivatioa the right-hand-sides
of (3.1:3.2) are computed by finite differencing on a uniformly spacedt€san grid.
We introduce a grid of equidistant spatial points= (z;1 , ... ,x;s). For this derivation |
assume that in each direction | have the same number of p¥iraedi, = 0,..., N —1.
| denote the grid spacing by. | have implemented finite difference stencils which are
fourth-order accurate over the interior grid and secortioaccurate at the boundaries.

In the linear coefficient case, if the Cauchy problem is welsed, as it is for the
first order harmonic system, then the semi-discrete proljtéstrete space, continuous
time) is stable for these centered finite differencing stenGiven that my evolutions are
done with Runge-Kutta methods for time integration, thi/fdiscrete system will remain
well-posed for sufficiently small Courant factors. Howewbis property does not hold
true for the second order system where second order spatightives appear. In order to
show well-posedness for this semi-discrete system | needdore that my second order
derivatives also obey additional properties required fellyposedness, and this needs to
be shown explicitly.

As an illustration of the derivation of the finite differengi for second differential
order stencils in our code, we look at a system of partiakdiitial equations, here illus-

trated as J
—u(t,@) = Pu(t,7),0 = (U, V)", (3.4)
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whereZ e R, U : Rx R - RV R x R - R and

A9; + B c

P= Dijaij + Eiai +F Gio;+J |’

(3.5)

Here the state vectar is split into the variables for which only first spatial detfives
appear[/, and which second appeaf,

Here | will temporarily treat the problem of well-posedndss second differen-
tial order in space systems in Fourier space. If we define ¢akaisproduct(u,v) =
[ utvde, with the norm is||ul| = (u,u), then the set of functiong el & =
(w1, wa,...,wq),w,} forms the orthonormal basis for the space of square intégfabc-
tions. In this space the functionst, z) may be represented as

ot F) =2y Ot @), (3.6)

w

whered(t, ) are the Fourier coefficients. By considering the partialvagives d;1;2
operating on the basis vectogse!“®, one defines the Fourier symbol; ;2 =
(iw;1)(iwz2) . . . (iwin ). One can then Fourier transform the systefh— P) and reduce
the evolution problem to a system of ordinary differentiquations (ODES). It is thus
shown via a first order reduction in Fourier space, that thit-pasedness is not influ-
enced by the lower order terms Bf

iwo A" C

P = .
wgD™ iweG™ |7

(3.7)
wherewy = |J|,w; = won; and M™ = M;n;. It is shown in SectionZ.6.4 that if there
exists a positive definite a Hermitian matiX(n;) such thatd P — PTHT = HP —
PTH = 0 whereP := A'n; for some arbitrary unit vectat;, with this symmetrized?
| then get a complete set of eigenvectdts, = \,e, with eigenvalues of\,. We may
say that a system symmetric hyperbolid all A* are symmetric (i.eH is independent

of n;). If there exists a positive constaif, such thatk'l,, < H < K1, (where
Lo = diag(wil,, I,), then the problem is well-posed in the norm

d
ol = [ S l0 + VP2, 38)
i=1
Then the problem is also well-posed in the ndiny;, defined as

loll7, = o' Ho. (3.9)

w

On the discrete level a grid function is definedvas v(¢, z, h) and the system above
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becomes
d T

U= Pv,v= (U, V)", (3.10)
A'D1,n) c

P=| | . .
DiDE" + EDM + F o GiDM 4

(3.11)

D; andD;; are the 2-accurate centered discrete differencing stencils farding second
derivative operators. We now perform the same analysis uri€ospace, representing
grid functions in terms of discrete Fourier coefficients. | efine the discrete scalar
product of two grid functions

(w,v)g = hghyh, Z Ti0 0k Uijk - Vijks (3.12)
ijk

whereo;, o, o}, are the coefficients of the corresponding inner product ohes the
coordinate directions. The norl is defined such that for a discrete inner product
(u,v)g = u’ Hv, whereH = HT > 0. For diagonalH, the set of the exponen-
tial grid functions{ze“*) w = (wi,ws,...,wq) ,wr = —N/2 +1,...,N/2} give

an orthonormal basis in the space of the grid functions. Theifean scalar product
(x,y) = Zle x;y;, allowing us to decompose a grid functiofy, x, h) to

1 i(w,x
v(t,z, h) = W Ze< ot w, hw). (3.13)

The quantities(¢, w, hw) represent the Fourier coefficients and they satisfy
1 —i(w,x
v(t,w, hw) = W zm:e WDyt 2, h). (3.14)

The discrete scalar product is then

(v, u)p = > il (3.15)

the shift operaton?C applied to my grid function is

va(t,x,h) =v(t,2', h) x=(Ti,...,x; +kh,...,2;,), (3.16)
and the shift operato$* acting on the basig'“:*) gives
Skelwa) — Sk:j(hwj)e<w’m>, gf(hwj) = elFhe (3.17)

J

A finite differencing operatotD; corresponding to thenth-order derivative in the
j-direction, consists thus of a linear combination of shifeators such thaD; =
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Y g akS]’?. Its Fourier symbolD; satisfies

Djem) = hmm Ny " apettheselon (3.18)
k

Similarly, one can introduce the Fourier symbols of mixedw@gives. | can then perform
a first order reduction as before, drop the lower order teamd,get the principle part

. Aptm ¢
P = Ll . 3.19
D”ngjg,n) Gip) (3.19)

As with the continuum, stability can be shown in terms of a syatrizer, . As
in Section R.6.4, if there exists a positive definite a Hermitian matfii(n;) such that
HP—-PTHT = HP—PTH = 0whereP := A'n; for some arbitrary unit vectot;. We
may say that the semi-discrete systersyisimetric hyperbolif all A’ are symmetric (i.e.
H is independent of;). If there exists a positive constafit, such thatk ' < H < K I
then the problem is well-posed in the norm

d

v}y =D IDsUR+ V7. (3.20)
=1

With these relations | can show well-posedness in both thre-discrete and the discrete
regime by methods which are direct discrete analogs to ttihads used to show well-
posedness for the continuum solution.

3.1.2 Finite Differencing

For the purposes of the simulations for this proposed systese finite differencing
operators which obey the summation by parts property asigqu in the next section,
and which are weighted upwinded sideways derivatives atear the boundary. The
finite difference operators usirdy + 1 points separated by a distanc¢hat approximate
a derivative of ordemn can be constructed as in Secti@¥.] and obeying the properties
described in the previous section. | construct these opsrdity Taylor expanding the
function ™4 (x) = 2" %(log z)™ around a point:o = 1 up to the ordefz — x()>" .
Heres € —n, ..., nis the offset of these points from symmetry with respect &dbnter
(s = 0 for centered differencing). The coefficientsoin this expansionfmm’s?k, will
be the weights of the points in the differencing stencil. Hemeral finite differencing
operator is thus a sum over the shift operator

n-+s

D™ = N frnsnST (3.21)
k=—n+s

This operator will be accurate im + 1 — m order convergence.
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The centered first and second derivative operators are then

1 n—+s '

Dhms - 5,55 (3.22)
j=—n+s
pir— Zn: 10ni (55— 5-4) (3.23)
~h 2 '
j=1

1 & . .

D" = = > Bnj(§7 4+ 579 (3.24)
j=0

where the coefficients are obtained from

) b sDinsl)
tnss =4 s m—sn I 70 (3.25)
i(anM - Hn+|8\) J=0

and y?
1yt ;
By = XV ey 920 (3.26)
_Zj:1 ﬁn,j J = 0.

HerejB,; = 2an, for j > 1 andH, = >, 1 is the harmonic number. | define
dimensionless finite difference operators

h
Df) = Z(Ds +D-) (3.27)
DY =nD,-D_)=hn’D,D_, (3.28)

Whel’eD_M}i = (Uz‘_,_l — Ui)/h andD_vi = (Uz‘ — Uz‘_l)/h.

In order to maintain numerical stability for nonlinear pierins, we add artificial dis-
sipation to the right-hand-sides of the time evolution ¢igns as described in Section
[2.5.3. Thisis must be done in a way that the dissipation term cg@seaway fast enough
that it does not change the convergence order of the systene. IHise the Kreiss-Oliger
dissipation operataP(?™) of order2m, as discussed in Sectiod.5.3

d
1™ — m m
pem) :_%;ﬁm 1S o5(Dag)™ (D)™, (3.29)

j=1
for a2m —2 accurate scheme, where > 0 regulates the strength of the dissipation. This
form of numerical dissipation has been proven to be numigristable for non-constant-
coefficient hyperbolic PDEs [67].

With the differencing operators and relations derived &ttho previous sections | can
now proceed in deriving a well-posed boundary treatmena feecond order differencing
in space, first order in time harmonic evolution system birggia bound on the energy
growth of the metric variables and their derivatives for $keni-discrete system.
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3.1.3 Summation By Parts

In order to ensure the well-posedness of the semi-discysters, we need to obtain an
estimate on the energy growth of the system, as discussezttios 2.6.4. To do this, |
have used difference operatdpswhich satisfy the “summation by parts” (SBP) property.
A discrete operator is said to satisfy SBP for a scalar produe (u,v) = f;’ u - vdx if

(u, Dv) + (v, Du) = (u-v) |2, (3.30)

holds for all functionsu, v in the domainja, b]. This is the discrete analog of the inte-
gration by parts property for continuous functions. By gntging for the energy estimate
using the SBP property of the difference operators, | enthaeboundedness properties
of the continuum energy estimate carry over to the dis@étsystem. | can construct
these difference operators, including numerical boundangditions in a consistent way,
for the system of equations i2.41)

3, (g 0,GM") = 5™ . (3.31)

| follow the procedure outlined by Strand [102] in constimgtfinite difference sten-
cils D of a given ordery, such that

du
Du=— h"™ 3.32
U= + O(h7), (3.32)

and which satisfy the SBP proper8.80. Briefly, given a state vectar = (uq, u1, ..., u,)"
onn grid points, | construct a finite difference operaforas a matrix acting om. The
coefficients ofD can be represented as products of the standard operators

1
Doy fijr = o (fixrk — fic15k)
1
Disfijr= 7 (fix150k — fijk) 5
1
D_.fijr= 7 (fijk — fic1jk) (3.33)

described more generally in the previous section. They aterghined up to the bound-
aries of the domain by solving the set of polynomials
d m
Dacm—izo, m=0,1,...,T, (3.34)
dr
which establish the order of accuraeyof the approximation. The SBP rul8.80 pro-
vides an additional set of restrictions,

(u, Du) = —%uQ(O), (3.35)

and
(u+v,D (u+v)) = (Du+v),u+v),— (uo+v0)° (3.36)
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which should hold for alk, v in the half line divided into intervals of lengtth > 0. Fol-
lowing Strand [102], we can solve these conditions expyidir the stencil coefficients

of the first derivative operatab and obtain stencils like the ones describes in Sections
[3.1.9 and [3.1.]. Itis trivial to obtain a second derivative operator signply repeated
application of the derived first derivative operator. Hoem\this results in a very wide
and thus impractical stencil, and instead | use the secoridatiee SBP operators de-
scribed in [103, 108] and shown to be valid in Secti@rl[d. The explicit expressions
for the finite difference stencils which | use are given in][40

The above considerations apply to the construction of idiffee operators along a
single coordinate direction. | can derive a 3D SBP operayaaplying the 1D operator
along each coordinate direction. It can be shown that thdtieg operator also satisfies
SBP with respect to a diagonal scalar product

(u,v)g = hghyh, Z Ti0 0k Uijk - Vijks (3.37)
ijk

whereo;, 0, 0}, are the coefficients of the corresponding inner product ohes the
coordinate directions. The noriff is defined such that for a discrete inner product
(u,v)g = uT Hv, whereH = HT > 0. Note that this is only true if the norn¥,

is diagonal. Here | restrict myself to this case.

3.1.4 Well-posed Boundary Conditions

| have constructed finite differencing operators whichsfatsummation by parts, and
thus can use the rul830 as a tool for deriving an energy estimate and ensuring well-
posedness of the semi-discrete system. For the continustensy | have a well de-
fined energy estimate which can be used to bound solutionsou@h use of the SBP-
compatible derivative operators defined in the previousi@®cl ensure that an energy
estimate also holds for the semi-discrete system. If thésggnestimate bounds the norm
of the solution in a resolution independent way, then | hasghle semi-discrete system.
Optimally, | would like the norm of the semi-discrete satutito satisfy the same estimate
as the continuum solution.

To establish well-posedness | impose boundary conditi@ased upon the energy
norm

E = lut, )|* = (u,u) = /Qu - Hudx (3.38)

whereu(t, .) is the solution of the IBVP at time t, anfl is a symmetric positive definite
matrix on the bounded domain. | require that

E(t) < C(HEO),  t>0, (3.39)

with C'(¢) independent of the initial and boundary data, so that thetisal is bounded by
the energy at time = 0 for all ¢.

As an instructive example, which contains the essentialifea of the derivation for
the Einstein equations, | derive explicitly the energyraate for the wave equation with
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shift,
_ij it
82 = (thaiaj - 2%6@) u. (3.40)

where—?y—fz is the shifts?, and 337 — 1_“1 is the lapse.

| need to ensure that the energf®”) = ||u(-,t)|]?, satisfies that the energy of the
system is bounded for the duration of the simulation. The titmrivative of the energy of
the system can be re-written in semi-discrete form as falow

d d 9 4
5¢ = (1l [Ses] )
ij
= ((ug, ug) + (ug, ur)) — %((ui,ujﬁ + (wit, ug)) - (3.41)

This is only the energy for the system without the constsaitftthe constraints are pre-
served throughout the evolution, then deriving a bound @nehergy is proof of stabil-
ity. However, without a bound on the constraint propagasigstem, this well-posedness
proof only holds in the linear regime. Therefore, in the readtion, | will derive a system
to add constraint preserving terms to the SBP boundary tionsli

In this section my notation will follow that: | will use paati derivative symbols
for continuum equations and subscripts for semi-discretevatives. To ensure that this
guantity remains bounded in the semi-discrete case, Ird@terthe energy growth which
arises from the application of my boundary conditions, amdave this via the simultane-
ous approximation term (SAT, or “penalty”) method desadifie [108]. | use a discrete
second derivative stencil which also obeys SBP and moreaatetyl approximates a sec-
ond derivative than the wide stencil created from applying first derivative twice as
described in Sectior8[1.1].

Since | use differencing operators which obey the SBP cmmgitve can make use
of Eq. (3.30 to integrate Eq. 3.4)). For the wave equation, after some algebra, this
condition gives
z;=N; it

Y 2
+ %(ut)

dt

x;=0 x;=0

d 'Yij ;=N
—&=-2 [W(Utu]) ] . (3.42)

That is, the change in energy is determined by fluxes at thadaoy points;z; = 0 and

On the boundary faces, | impose a set of conditions whichhi®mntoment | write in a
generic form

[ﬁxizoat + Oéxi:()ai + 5$i:0] (u — uo) = 0 (343)
[ﬁggi:]\[(:)t — axi:Nai — 5$i:N] (u — uo) = 0 (3.44)

in terms of free parameteks, 4, andd which are indexed according to the grid face.
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These are substituted into into the estimate, B4, leading to

d aN; ol 2> (040' > 7" 2>
—E&=-2 ( i — — LUy — —u
dt [ By, A ) ey, Bo, ¢ At

whereni is the normal to the boundary fageandu are data chosen to be consistent with
the initial data.

] . (3.45)

z;=0

The SAT method allows us to choose values for the free pasmmit the boundary
terms which conserve the energy in the system. | first wrigedtiginal shifted wave
equation, Eq.3.40, in semi-discrete form, explicitly including the boungaderms:

_ o (2) A 1) -1 A
uy = —— H  Diu—2—H D uy + 79, H Ey, (v, us + Bo, Siw + do,w)
Y Y
v, H ' En (an,ur + By, Siu+ 6n,u) (3.46)

The E, are vectors of lengttV defined asZy, = (0,0...0,1)" andEp, = (1,0...,0)"
to be zero everywhere except at the boundary poirfis.are sideways blended finite
differencing stencils satisfying the SBP property, as dieed in the previous section.

| determine the time dependence of the energy for this netesyi order to de-
rive coefficientsr for my penalty terms which give a well-posed semi-discretstesn.
Substituting Eq.3.46 into Eq. 8.41), and once again making use of the SBP property,
Eq. 3.30, | arrive at
d it it
Eg = (TNiaNi - %) utTENiut + 2 <7'01-C¥0i + %) u;rEoiut
b T o T
+2 <TNiﬁNi — T) Uy ENiSiu +2 <TOZ-BO,' + T) Uy EO,SZU (3.47)
Y Y

The free parameters) and7y can be used to eliminate the Ey, S;u terms, by setting
10680 = —v“ /4" andrn By = 7% /™. Then, the energy evolves according to

d ~it ~id -
EE = -2 (ﬁNiW - O‘NZ'W ﬁNilutTENiut
it ij
Yy _
+2 (ﬁoi% — ozoi%> By uf Eoue = 0. (3.48)

The last equality is arrived at after some algebra, sulbstifithe boundary conditions,
Eq. (3.43-3.44), and making use of the original wave equation, ByQ.
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The resulting semi-discrete evolution equation is given by

it ij
_ 1 _ 2
w = —LH DM~ o DD
v v
ok
’Y“ 0,
ok
’YttﬂNi

which, as a result of the application of the SAT terms, satisfhe energy conservation
equationd€ /dt = 0. This calculation may be found in more detail in the appefdid].

| require that the energy,(™ = ||u (-, t) ||?, satisfies 8.39 for positive times, that is,
for the duration of a simulation the energy is bounded. Theaisimultaneous approx-
imation terms (the SAT or 'penalty’) allows us to choose ealdior the free parameters
in the boundary terms which conserve the energy in the systedetermine the time
dependence of the energy for this system in order to deriefficents for my penalty
terms at the boundary points. This gives a well-posed sésora@te system. The corre-
sponding calculation for the Einstein equations, Eg46-2.47) mirrors this calculation
in Appendix [A.1], except with the inclusion of source terms which do not teelves
modify the boundary treatment. After the calculation digssat in Appendix A.2] for the
harmonic system, | obtain the boundary terms by the sameagppidescribed above. For
the harmonic system described in Sectiar8[J

H ™ Ey, (ao,uy + Bo, Siw + 6o, u)

+ H™'En. (an,us + B, Siu + do,u) (3.49)

it B it gt
0Q" = %DHQ“V — (7 + %)H_lflz’ﬂ’” (3.50)

with the boundaries obtained in AppendiX.2] the full system is
it gt

Z-t ..
0 QM = —%DHQ“” - (7 + VVZ VH ™ (Aij + Eo — En)Si)y™ (3.51)

20 7 Q™ | 2
+,}/ttﬁ0H Eoi[(1+w)Dz‘+’YW— i + 50" = 90)]
oyii ~it L Q™ 2
+’7ttﬁNH ENi[(l—W)Diw“ + vz +p(v“ —gn)]

For my secondary variabl@"”, wherey,, = \/=gg"” and@Q"” = g"*9, " .

| apply these penalty terms to my evolution equations in armionic formulation
code (AEIHarmonic) and in the next sections, we will teststheonditions with and
without the addition of additional constraint preservirgditions which do not effect the
energy boundedness of this system.
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3.1.5 Constraint-Preservation

In ref. [40], | used a somewhat ad-hoc boundary conditiorichvapplies a Sommerfeld-
like dissipative operator to all ten components of the retri

1 v
((% + 0y — ;) (g™ —gp”) =0. (3.52)

This follows the physically motivated reasoning that faragvirom a source, the evolu-
tion variables each satisfy a generally radial outgoingelikg behaviour. The condi-
tion is particularly simple to apply, and has been used aitely in evolutions using a
conformal-traceless formulation of the Einstein equati(see, for example, [87]), where
the choice of evolution variables has so far hindered theldpment of a more rigor-
ous boundary treatment. In fact, in simulations where thentaries have been pushed
to large distances (for instance through the use of meshemaént), the condition has
proven to be useful enough to allow for long-term stable @vhs. Eventually, however,
boundary effects do contaminate the interior grid, and ead ko a loss of convergence
or the accuracy required to resolve delicate physical featuThe conditions given by
Eq. 3.52 make no effort to satisfy the Einstein constraints, and ttan over time drive
the solution away from a solution of the full Einstein eqoas.

For the Einstein equations in harmonic form, it is possibldérive consistent bound-
ary conditions by explicitly evaluating the constraint pagation system. This has been
done for the first order harmonic evolution system descriiyedindblom et al. [39], who
have derived consistent conditions based on limiting inognaharacteristics.

Alternatively, Kreiss and Winicour [83] have demonstrateset of Sommerfeld type
boundary conditions, which are strongly well posed, as alpreserving the harmonic
constraints. The well-posedness follows from results ieugs-differential theory of
strongly well-posed systems, and applies to a broad classmafitions. Here | apply
their results directly to the generalized harmonic evolutsystem used in this section.
The harmonic constraints, EQ.87), provide conditions for the time components of the
metric:

— Oig"" — 0, 9" — Oyg"? — 0.g"* — FF = 0. (3.53)

The remaining metric components are determined by apptfie@gommerfeld-type con-
dition, Eq. 3.52, in a hierarchical fashion, using previously determinethponents as
required:

1

<am + 0 + ;> (g7 — gi'®) =0, (3.54)
1

(‘oa + 0+ ;) (9 = ™" = g6" + 95) =0, (3.55)
1

<8$ + 0 + ;> (gtt —2¢"" + g™ — gbt + 293" — gf)””) =0. (3.56)

These particular conditions are chosen to ensure welldmess of the solution, but are
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not unique. They lead to the following explicit conditions the positiver boundary:

(0 +0) g™ = 0ug™ — 0ug" — 0yg™" — 0.9 — P, (3.57)
@ +0)g" = (0o +0,) (2901 _900) B % (g — 24° + g
- (ax + %) (96" — 290" + g0") (3.58)
0z +0) g™ = (9o + ) (¢ — g0*)
—% (6" —g") + % (6™ = g0h) — dugd®,  (3.59)
0400 6" = — (¢" ~ i”) + uait® (3.60)

The complete list of conditions can be found in Appendid].

| combine the results of the previous section (see Appendii) these constraint
preserving conditions, to arrive at expressions for thdutiem equations foilQ* from
Eq. 2.47) with the new penalties derived in the appendix and showrgin/.32),
o gitgit . gt B
HQ" = - (g” + )Diwﬁgﬂ“— “DiQ" + 5
g g

it | (1 ) o s -]
+——H 'Ey, || 14+ = ) 3" + Sip.g"" — p"
gtt/BO Oz gtt gt Z+g p
it e (1= e s -]
+———H 'En, |1 - = | g" +S;i_g" — p"| , 3.61
gttﬁN N; gtt 9t i-g p ( )
whereg"” = /—gg"”. and where the"” are determined by Eqs3.67—(3.60. For
example A
p% = Si4 g% = (Siy§" + Day g + Dpsg"" + F*), (3.62)

corresponds to the constraint conditions in EGs5T), wherei is the direction outward
from the boundary faces; - is the stencil for sideways finite differencing on the bougda
and A, andB are tangent to the face.

3.1.6 Results

The boundary prescription described in the previous setiis been implemented for the
harmonic Einstein evolution code (presented in [40] andi&&¢2.3.3). | have carried
out tests comparing three boundary configurations. The fidsich | refer to as “stan-
dard Sommerfeld” simply applies Eg3.62 to each evolution variable on each face of
the cubical evolution domain, which was the boundary imgetation used in [40]. The
second (“SAT") applies the boundary treatment derived iatiSe [3.1.4, and the third
(“CP-SAT") improves on this by implementing the constrapgreserving conditions of
Section B.1.5. I find that in each case, the SAT and CP-SAT boundary candtrespec-
tively improve on the standard Sommerfeld condition intiaiility to reduce boundary
reflections and constraint violations over time.
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Figure 3.1: The evolution of¢ for flat-space wave equations with a constant shift in
the z-direction. As initial data | have used a spherical Gauspialse of
amplitude1.0 and width1.0, on a grid8 (121 grid points) units in size.
Thin lines are the Sommerfeld-type boundary conditionfiauit the SAT
terms applied, whereas thick lines use the SAT boundaryniesa given

by Eq. 3.49.

Shifted waves

As a first test of the methodologies outlined in the previardion, | consider a simpli-
fied non-relativistic example problem which demonstrates dffectiveness of the SAT
method. One of the challenges of designing boundary tredstikat control the energy
growth for black hole space-times in commonly used gaugdwiproblem of non-zero
shift. A useful problem which has been used as a toy modeh#ofull Einstein equations
is the shifted scalar wave equation [42,109],

(07 —2B'0,0, — (6" — ') 0;0;) ¢ = 0, (3.63)

with shift vectors? = ¢ /¢ (see Eq.3.40). In the appendixA.1.3], | have explicitly
derived the boundary treatment of this problem, which hanbmplemented in a 3D

evolution code.

In Fig. 3.1, | display results from evolutions of a Gaussian wave padketvarious
constant values of the shift. The,,-norm of the energy of the solution is plotted as a
function of time for evolutions using standard Sommerfgidet conditions, Eq.3.52),
and compared with the SAT conditions derived in Sect®i.[4. As the waveform im-
pinges on the boundary, there is a certain amount of unpdystiection, but the energy
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Figure 3.2: The same as in Fid.1 but shown in a logarithmic scale foiPg||~ and

on a longer timescale. Note that standard Sommerfeld boyedaditions
are unstable fof3‘| > 1.

is largely removed from the grid in steps corresponding &odiossing time, as visible
in Fig. 3.2 The boundary reflections are much lower in the case of the I[8Ahdary

conditions, and the evolution is stable even to superlumipé > 1, shifts suggesting
that these conditions are stable even for outflow boundaries

Linear waves

As a first test of the implementation of the constraint pnasgr boundary conditions
for the full Einstein equations, | have considered low atnpk wave solutions of the
linearized Einstein system. These solutions exhibit mat dynamics which exercise
the boundaries, but for which the source terms of the Eimstguations are negligible.
The particular initial data which | use are the quadrupolekdésky waves [110],

ds?

_|_
_|_

—dt? + (1 + Afy)dr® + (2B frg)rdrdd + (2B frg)r sin 0drdg (3.64)
(1+CLY + AFDW2d6% + [2(A — 2C) fos)r? sin 0d0d¢
(L+CfS) + AfE)r? sin? 0de?
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Figure 3.3: The Lo-norm of the Hamiltonian constraint for a Teukolsky wavenpar-
ing my constraint-preserving boundary conditions with ¢tendard non-
SBP Sommerfeld conditions, as well as the purely Somme8ald algo-
rithm to ensure well-posedness. The boundaries for thialation are at a
radius of 7M from the center of initial Gaussian pulse.
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with radial dependence given by

F@  3p®  3p
A = . - | (3.65)
FG®  3r@ ep)  gF
B:—2+T3+T4+T—5, (3.66)
1| F@  9op®) 9F<2> 21F)  21F
C - Z r + 7‘2 T’3 + ’I"4 + ’I"5 ) (367)
d"F(z
F = [ e } (3.68)

where F'(z) = F(t — r) described the shape of the out-going wave. The functions

Frrs - f¢>) depend only on the angld¥, ¢) given explicitly in [110] for azimuthal
quantum numbem = —2,...,2. This initial data has been used as a testbed in a number
of numerical studies [111-114]. The particular solutioriakii use follows Eppley [115]

in combining incoming and outgoing wave packets so as toym®a solution which is
regular everywhere in the space-time.

The overall behaviour of the evolutions using the three bamconditions is summa-
rized in Fig.3.3 which plots the evolution of thé,-norm of the Hamiltonian constraint
as a function of coordinate time, for a wave of amplitwd@01. In each case, there is
a reduction of the constraint violation as the wave propemaff the grid. In the stan-
dard Sommerfeld case, this quickly saturates at a levé0of, determined by the finite
differencing resolution. In the case of the SAT boundaryditions, however, the con-
straint violation eventually reaches machine round-o# tuthe constraint damping in
the interior of the domain. This happens at a much fasterfoatine explicitly constraint
preserving condition (“CP-SAT") which introduces the mfaddition described in Section
[3.1.5. Itis notable that in this case, the initial boundary reilat, which the standard
Sommerfeld condition shares with the simple SAT treatmisrélso absent.

Nonlinear waves

The goal of this boundary treatment is to reduce the errdredoced into the evolu-
tion domain during evolutions of strong field spacetimesoiving non-linear waves,
as for instance, generated during binary black hole ewwisti To model this problem
in a simplified setting which does not involve complicatiahge to excision or interior
mesh-refinement boundaries, | have carried out tests usengdnlinear Brill wave solu-
tions [116]. These solutions have been studied in a numbeuiferical contexts, both
as testbeds, as well as exploring the onset of black holeatom[115, 117-120]. The
initial spatial metric takes the form

ds® = U4 (dp® + d=?) + p?do?], (3.69)
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Figure 3.4: The L,-norm of the harmonic constraints for a Brill wave of ampdi¢u
0.5, comparing constraint-preserving boundary conditionb thie standard
Sommerfeld conditions, as well as the purely Sommerfeld 8§brithm
to ensure well-posedness. The boundaries in these siongadie also at a
radius of 7M from the center.
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in cylindrical (p, ¢, z) coordinates. | choosgof the form of a Gaussian packet centered
at the origin,

qg= ap267r2, (3.70)
wherea is a parameter which is used to set the overall amplitude efattisymmetric
wave. Generally | choose a value @f= 0.5 to construct a wave which is strong, but
not so as to evolve to a black hole. As a result, | expect thillyi non-linear solution
generates waves which propagate off the grid leaving beaifidt space-time. As the
boundary data is unknown, | set the data in the boundary tiondito Minkowski space
and rely on the fact that these conditions are non-refleetieeconstraint preserving.

In Fig. 3.51 show a number of frames from two evolutions, displaying rietric
component at various time instances on a grigdnits in size. In the right column, the
standard Sommerfeld conditions have been used, wheredg daft we have used the
constraint preserving SAT boundary conditions. By the sddoame at = 8, the wave
pulse has reached the boundary, and the following frames gtereflected pulse. Qual-
itatively, the CP-SAT boundary conditions show a much stneoprofile, with smaller
amplitude features. By = 45, the wave has left the grid in the CP-SAT case, to the
extent that it cannot be seen on the linear scale of the fignthe standard Sommerfeld
case, however, there is still some non-trivial dynamicall@ion. A more quantitative
demonstration is shown in Fig.4, which plots thel,-norm of the harmonic constraint
C° as a function of coordinate time for three situations: Tlama@ard naive Sommer-
feld boundary conditions (“Sommerfeld”), the SAT boundagnditions developed in
Sec.3.1.4("SAT"), and the constrained version of these boundary @@, following
the prescription of Sectior8[1.9 (“CP-SAT"). In the Sommerfeld case, the constraint
violation is entirely reflected by the grid boundaries, ahe value remains essentially
constant at its initial value throughout the evolution,retlgough constraint damping has
been used on the interior code. The SAT boundary conditiomsgever, do a much bet-
ter job of removing constraint violation from the grid, shiog/ the exponential decrease
with time that is expected from the damped solution. The traim preserving boundary
conditions show the strongest damping, suggesting thatdhstraint violating modes
introduced by these boundary conditions are much smaléer tor the SAT case. The
evolution of the other constraint components show the sahawviour.

As a final test of the stability of my boundary prescriptiorhave carried out evo-
lutions of Brill waves for which | have attempted to excitgifrequency error modes
along the lines of the “robust stability” test [121, 122]. iFkest is a means of determin-
ing whether it is possible for modes of any frequency withiy af the grid variables to
exhibit exponential growth during the evolution. On a nuicergrid, error modes exist
at fixed frequencies, set by the grid resolution, and thedstahtest consists of perturbing
each variable at each grid point by a small amount of randatetgrmined amplitude
e. The effect of the random perturbation is to seed modes wthieh have the potential
to grow, if the system is unstable at that frequency. Sindegbfirst used in [122] and
proposed as a standard testbed in [121], the test has bestmwssarumber of applications
to demonstrate well-posedness of numerical implemem&{i85, 121-125]. In Fig3.6
| applied this test by applying some kernel of random datalltpants including the
boundary points. For the SAT methods the random noise geip@hand then the decay
of the energy looks similar to that of the standard brill fesFig. 3.4. For the standard
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Figure 3.5: Thett component of the metric for a Brill wave of amplitude= 0.5, com-
paring constraint-preserving boundary conditions with standard Som-
merfeld conditions. The above plot shows a two-dimensiongin the xy
plane at various times. On the right is the evolution of thi#l Brave with
constraint-preserving SAT and on the left is the same sitimndut with
standard Sommerfeld type boundary conditions.
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Figure 3.7: Evolution of theL,-norm of the harmonic constraints for a Brill wave+£
0.5) perturbed by a checkerboard noise pattern of amplitutte).1, over
all the grid points, in order to excite the highest frequegiggt mode.

Sommerfeld boundary conditions the evolution becomesabiesat the boundaries.

A variant of this test recognizes that in the case of an ilggbsystem, the fastest
exponential growth will result from the highest frequencgda. On a finite-difference
grid, the frequency of this mode is set by the grid spacingarl excite this mode by
adding perturbations to the data in a “checkerboard” pattehere neighboring points
receive an opposite perturbation of fixed amplitad@&hat is, | choose

- { +e, fori+j+ keven (3.71)

—e, fori+ j+ k odd.

In Fig. 3.7 1 show the evolution of thé.,-norm of theC? constraint component for
the evolution of aru = 0.5 Brill wave for which each component of the initial data has
been modified according to E®.71) with e = 0.1. The two versions of the SAT bound-
ary conditions prove to be rather impervious to the initialedperturbation, and display
essentially the same behaviour as in the unperturbed cape3.& It is perhaps notable
that the non-constraint-persevering boundary conditstiasv a slightly slower decay rate
than for the non-perturbed data of F&)4, so that it takes more thald0 time units to
reach the level of machine round-off, whereas the cons$tpm@serving boundary condi-
tions reach this level in essentially the same amount of &sé the unperturbed case
(though with a somewhat different decay profile). The sinfadenmerfeld boundary con-
ditions, however, are unable to cope with the initial pdration and lead to an instability
on a very short timescale.
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Figure 3.8: The infinity norm of the error iy, relative to the exact solutiors;, for
2D shifted gauge wave simulations with amplitude= 0.01, d = 2, and
boundary widthe, y € [—7, 7]. The resolutions presented here éredy =
0.05,0.1,0.2 doubled relative to the next lowest resolution. The sotutio
with standard boundary conditions blows up at early timakiashown as
the dashed line witdz = 0.1.

An important test of the validity and convergence of any ntca¢ code is a com-
parison against an exact answer. It is important to showdhatodes converge at the
expected rate for the truncation error for changing griccsma as discussed in Section
[2.5.]. For this reason | present here the results of the simulatioa shifted gauge
wave with constraint preserving SAT boundaries at threferdint resolutions and com-
pare against the exact solution as proof that the harmorle wdth these boundary con-
ditions provides a stable and convergent evolution scheme.

The choice of the shifted gauge wave test is a stringent aestonvergence, as even
a gauge wave without shift can have a constraint preserstglility in harmonic coor-
dinates (i.e the gauge wave metric has exponentially gigpwerturbations which satisfy
the harmonic conditions and the Einstein equations). Thkigiad of a shift introduces a
new type of exponentially growing instability in the stardi®armonic reduction of the
Einstein equations. Thus the choice of a shifted gauge vgassiringent non-linear test
of our system [126]. The success of this test shows that rinateroise excites insta-
bilities that can be cured by a combination of discrete coagion laws, well-posed and
constraint preserving boundaries, and constraint adgrsisn

The standard gauge wave test is based upon the flat metric
ds® = (1 — H)(—dt? + dz?) + dy?® + dz?, (3.72)

where

H=H(z—t)= Asin (W) . (3.73)
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is a sinusoidal wave of amplitudé propagating along the-axis. In order to test 2-
dimensional features, the coordinates are rotated acaptdi

1, 1

= (' —y), y=
sqrt2

Sq7’t2 (ml + yl) ) (3'74)

which produces a gauge wave propagating along the diagadtiatiependence

sin (2“9”, - Z: — Ng)) . d=dV2. (3.75)

Adjusting d or d’' to the size of the evolution domain gives periodicity in thendy
directions.

In figure 3.8) | show the error values for a 2D shifted gauge wave with aiongdi
A = 0.01, d = 2, and boundary width:,y € [—7,7]. The resolutions presented here
aredz, dy = 0.05,0.1,0.2 doubled relative to the next lowest resolution, thus we ekpe
from the convergence rate at timewith the error€ =|| ®, — @ q4ct |0

H cI)h=25:l: - (I)exact Hoo
r(t) = log , (3.76)
( ) 2( H (I)h:&v - (I)exact Hoo )

to obtainr(t = late) ~ 2 andr(t = mid) ~ 3 for our system with fourth order conver-
gent interior stencils, and second order at he outer boynttateed, we obtain for(t =
10)(0.05.0.1) = 4.0380, 7(t = 30)(0.05.0.1) = 3.3907, andr(t = 200)g.1.0.0) = 2.0457.
The standard non-SAT Sommerfeld boundary simulations wastable for the shifted
gauge wave tests.

Black Hole Space-times

The ultimate goal of this boundary treatment is to improwe dbcuracy and stability of
binary black hole simulations. As a simple test | did simiolag for constraint preserving
SAT penalty boundaries and non-constraint-preservingdstal Sommerfeld conditions
for a head on collision of two Brill-Lindquist black holeofn a small separation G\
with boundaries relatively close in at4)/. The simulations were done in a fully har-
monic gauge and the interiors of the apparent horizons fdr blck hole was excised. |
extracted waves by both methods described in SecBdhd and derived the total energy
of the system from the Hamiltonian and momentum constraints

In Fig. [3.9) | show the constraint growth of the two simulations. Herel yan see
that the harmonic coordinate constraints are much betegepved with the constraint
preserving SBP penalty boundaries than with standard SofeltheThis behaviour holds
for all the harmonic constraints as well as for the physi@alstraints. The constraint
violations in the constraint preserving SAT run continugiminish smoothly down to
numerical error up td000M, where the run was stopped. In Fi@.10 we show the
Il = 2,m = 0 modes or the Zerilli scalar for waves extracted at a radiugdaf from
the center of mass of the system. The noise from the bounééection is very clear
to see at around00M for the standard boundary simulations. For these simulstibe
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standard Sommerfeld boundary condition run crashes ardt/ due to an instability

at the excision boundary cause by incoming noise reflected fne outer boundary. This
is strong proof that constraint preserving penalty bouledamprove stability for binary

black hole simulations, and can extend simulation runtingkienprove accuracy.

3.1.7 Discussion

| have examined the initial boundary value problem for theosd-order formulation of
the Einstein equations in the generalized harmonic gaulge system of evolution equa-
tions for this finite-difference harmonic code was derived4i0] where it was shown to
be accurate, stable, and convergent for long-term evolsitaf black hole space-times,
such as head-on collisions of two black holes, isolatedddetes, and binary black hole
inspiral and merger. In this section | described the ddédwmatimplementation and test-
ing of a new boundary treatment for this system. | demoredr#ttat this new treatment
maintained the validity and convergence (to lower ordeghsgith the standard boundary
treatments. | additionally show that these conditions givgreater accuracy (for all rea-
sonable resolutions), improved constraint preservatioproved boundary transparency,
and greater stability in robust stability tests.

I implemented Sommerfeld-type boundary conditions as ifd&sg), which are ap-
plied via the simultaneous approximation term (SAT) mettoocbntrol the energy growth
of the system, and are designed to be maximally dissipativéhen establish well-
posedness for the semi-discrete symmetric hyperbolicudool system via the energy
method [103] by bounding the energy growth of the system uthgeassumption that the
boundaries are in the linearized regime. | have implemefitég-differencing stencils
that obey the summation by parts (SBP) rule [102] with thgyaliel norm, with mini-
mum bandwidth second-derivative SBP stencils as derivgtid&]. These stencils give
fourth-order accuracy in the interior, and second-ordehetboundary. While the stan-
dard stencils give fourth-order everywhere, | show thairmgroved accuracy of the SBP
conditions more than makes up for the loss of two orders ofegence.

The stability and well-posedness of the boundary conditioais been demonstrated
for a number of test problems: shifted scalar waves, lizedrivaves, nonlinear waves,
and random and high frequency stability tests. Further avgal accuracy results from
incorporating the constraint preservation into the coond, following the prescription
of [83,97]. The boundary conditions are still Sommerfelgeyfor most metric com-
ponents, but | substitute conditions gained from enforaegrvation of the harmonic
constraints. This gives us four conditions directly frone thermonic constraints, three
from the coupling of these conditions to my outgoing Someldrfype conditions, and
the three components for the directions tangent to eachdaoyrface come only from
our Sommerfeld-type conditions. In Sectidn.g | show that, as expected, these new
outgoing Sommerfeld, constraint-preserving conditi@iain the robust stability and con-
vergence properties of the purely Sommerfeld-SBP contditid he tests also demonstrate
that these new conditions lead to smaller errors in satigftfie constraints, and are more
transparent to waves propagating through the boundartesy §hould thus lead to more
accurate evolutions than the purely Sommerfeld SAT peraltindary conditions.
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In a related study, Rinne et al. [111] have considered a numbboundary treat-
ments for the case of a first-order in space harmonic foriomatncluding the Kreiss-
Winicour [83] treatment adopted here for a second-ordetegysThey find that an addi-
tional physically motivated conditiord) W, = 0, which aims to eliminate incoming radi-
ation, can have important effects in reducing physical c&flas. Similar modifications
may also prove beneficial to the second-order system pegbbere, though apparent re-
flections from the outer boundary are rather small even irclse of non-linear waves
studied in Sectiond.1.q§. These physically motivated conditions will be discus$ed
boundary conditions for the BSSN formulation in the nextisec

With binary black hole evolutions now extending over mudiprbits, and thus many
crossing times on conventional computational grids, baundffects can potentially have
a non-trivial influence on the late-time dynamics and ex¢é@gravitational wave signals
from such simulations. The tests provided here, includimgjinear Brill wave and binary
black hole head-on collision evolutions, suggest thatelmeethods will also be effective
for isolated strong sources, and thus will also be apprtefaa black hole inspiral simula-
tions, though these involve a number of other technicalidenations (such as excision).
The methods can be extended to other formulations of thediinequations, provided
certain hyperbolicity assumptions are satisfied, and Id@#cribe in the next section how
to pursue improvements of other commonly used systems sutte @onformal-traceless
one employed in [87].

3.2 ADM -BSSN

Our firmest convictions are apt to be the most suspect, thel ma limi-
tations and our bounds. Life is a pretty thing unless it is etbby the in-
domitable urge to extend its boundaries.

Jose Ortega y Gasset

The Baumgarte-Shapiro-Shibata-Nakamura (BSSN) foriomabf Einstein field
equations is the most common formulation used in numergativity simulations today.
This is both because of historical reasons, and becausenai@nce in setting stable and
intuitive evolving gauge conditions, which allow for longrin stable binary black hole
simulations. However, proving well-posedness in BSSN isugahmmore daunting prob-
lem than for the harmonic formulation of the Einstein equadi because BSSN is only
a strongly hyperbolic system for certain specific gauge itimmd. However, the stability
of the system has been proven in [127] for a Bona-Masso typgegeondition and a fixed
shift. Thus, when we have artificial boundaries, in [127thequire the normal compo-
nent of the shift to be zero at the boundary, and conditioapkaced on the nine incoming
eigenfields to obtain well-posedness. Deriving stable aglttposed boundary conditions
for the BSSN formulation has been a challenge faced by matheifield for at least the
past decade of numerical relativity. Today, most numeriektivity groups still use the
naive boundary conditions called “radiative” boundarasscribed in Sectior2[6.5 im-
posed to all the geometric variables, thus over-specifitiegproblem on the boundaries.
Those conditions are very easy to implement numericallwdwer, they do not preserve
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the physical constraints and can introduce an unreasonatdeint of artificial radiation

into the system. In this section | construct boundary caémut which preserve the con-
straints and discuss the well posedness of the initial-tharynvalue problem (IBVP) for

the BSSN system.

Beyer’'s work in [127] shows that the BSSN formulation for anlBeMasso type gauge
condition and a fixed shift is reducible to a first order symineyperbolic system
(FOSH). In that work and boundary conditions leading to al wesed system are for-
mulated. However, the boundary conditions presented inghper are not constraint-
preserving. Thus, they may yield reflections or constraiolating modes. The work by
Gundlach and Garcia in [34], formulates constraint-pnaagr boundary conditions for
the BSSN system but the well-posedness of the resulting IBA&not been established.
For the BSSN system | want to meet the same conditions foracgand validity as with
boundaries for the harmonic formulation described in thewioius section3.1]. That is,
it must not change the dynamical behavior of the fields remrtiie boundary surface, it
must not introduce any fields coming from said boundary, #ldgion the boundary must
be themselves be stable and bounded, and it must presementidon on the full system
that it must also preserve the constraints for all times thewowords, the conditions must
provide one with both well-posedness and constraint pvatien for the full system with
boundaries.

From [127] | have the requirement that nine sufficient coad& must be imposed,
and it gives us:

e the time dependence of thg, Weyl component has to be zero, or at least bounded
(for binary simulations | simply requird to be bounded);

e the normal to the boundary component of the shift vector, elsag the derivative
of the lapse in that direction have to be zero;

e finally, | get the other two conditions relating the lapse #rshift in the directions
tangential to the boundary.

| present here a discussion on the well posedness of the etargystem, as well as the
possible numerical implementation of such conditions atthundary.

| present a new set of boundary conditions for the BSSN systiém*1+log” slicing
described in Sectior2[3.9 and the “Gamma driver” shift described Secti@¥.4 which
is currently commonly used in numerical simulations of bjnalack holes today. The
main properties of the boundary conditions described mghbction are:

e they preserve the constraints throughout the evolution,

e they control the Weyl scalab at the boundary (a condition that should yield small
spurious reflections of gravitational radiation),

¢ they yield a well-posed IBVP for the linearized problem (asenable assumption
if boundaries are far away), and are expected to yield a vesié@ problem in the
nonlinear case as well.
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As in [127] | have nine conditions. The boundary conditiobtatned are the nine:

e for the gauge fields, | obtain the boundary condition thatbienal component of
the shift has to be zero, as in [127]

e the condition that the derivative of the lapse along the mbmlirection has to be
zero at the boundary (flat)

e another two conditions for the tangential components obtiift

e and from the fields and constraints | obtain the natural ¢mwdihat the momentum
constraint has be satisfied boundary, leading to von Neurhgrenconditions for
the extrinsic curvature,

e and, asin [127], | obtain that the Weyl scallg at the boundary has to be bounded,
leading to relations between the second spatial derivatif’the metric coefficients.

In total, these are other five constraints, giving us the comalitions needed at the bound-
ary.

This construction is based on the methods in [128,129] witerboundary conditions
are specified in three steps. In the first step, the consppedptagation system is analyzed.
This system describes the propagation of the constraifdhlas, and | show that it can
be cast into a FOSH system. Homogeneous maximally disgiphtiundary conditions
are specified for this system that guarantee the propagattitne constraints. The second
step consists of analyzing the propagation of Weyl curvature.The BSSN evolution
system implies a convenient FOSH for the electric and magpetts of the Weyl tensor,
and the momentum constraint variable. | show that comgabbundary conditions for
this system can be specified by freezing the momentum camswuariable to zero and
freezing the Weyl scalaw,. Finally, the third step consists in controlling tigauge
degrees of freedomThe gauge functions, the lapseand the shift vectos; are free
to be chosen as best fits the problem to be evolved. This freeowever, is limited
by several pragmatic requirements. | study the system fomeon evolution equations
where | reduce the evolution system for lapse and shift ta @fseondition-dependent
evolution equations and specify boundary conditions fenthl present a brief discussion
of a numerical implementation of the boundary conditiora tham proposing and finish
with some conclusions of the complete system of boundarglitions obtained in this
work. What follows in this section is previously unpublisherork and was work done
with the assistance and guidance of Dario Nufiez and Oliaeb&:h.

3.2.1 Boundary Conditions for the BSSN System

The evolution equations in this section are the BSSN ewntuéquations with Bona-
Masso slicing and hyperbolic Gamma driver shift as in Secf&4.4 with the excep-
tion of the advection terms in the evolution equation for ¢héft. Using the notation
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from [127] the system derived and shown in Secti21B[] reads

Qoo = —a’f(a, o) (K — Ko(a)), (3.77)
&p = o’Gla,¢.z")B, (3.78)
QB = e H(a,¢,a")0I" —n(B',a,2"), (3.79)
L ~ _ 2.
oVi; = —20Ay;+ 29;0;8" — g%‘j@kﬁk, (3.80)

. 1 .

o = = (—aK—i—@kﬂ ) , (3.81)
- A I - - TF

a(]AZ'j = 4 {—DiDjOé + OéRZ'j + o — 48(z¢ . Dj)oz} (3.82)
~ - _ 2 .
4+ « (KAZ']' — 2AzkA§> + 2Ak(z 8])ﬁk — gA”@kBk — ae_4¢5ij s

WK = —e % [f)if)ia — 20,0 - [)ia] +a <Al-jf1ij + %K2> —as, (3.83)
AR ~ika A pi L Lxija A ak ki a.ai 2o ~ki A A
oI = i a]akﬁ + 3’7 a]akﬂ + Oy ajﬁ 3819'7 ajﬁ (3.84)

. o 9m . . o .
— 24190+ 20 {(m ~ 1), AY — ZED'K +m (P A7 + 6A”8j¢)] e

where | have introduced the operatdf = 9, — (379;, and whereG(«a, ¢,z") and
H(a, ¢, x) are smooth, strictly positive functions, andB®, ¢, z#) is a smooth func-
tion and come from thel*-driver’ condition [33]. Here, all quantities with a tildefer to
the conformal three metrig;;. That is, D’ andffj refer to the covariant derivative and
the Christoffel symbols, respectively, with respecftn The expressiof . JTF denotes
the trace-free part with respect to the conformal threeimetnd

1. ~ ~ . - i
Rij — —5’7]6[8198[71‘]' + r}/k(z (9])]_“’“ — F(ij)kaj’)/]k (385)
+ Al (21:]&1:]')195 + ffsfklj) ;

R, = —2D;Dj¢ —2%;D* Dy + 4D;¢D;¢ — 47;;D*¢ Dy, (3.86)
are the conformal equations for the Ricci tensor in termshefc¢onformal metric and
scalar. The parametet, in the evolution equation fdr?, which was introduced in [130],
controls how the momentum constraint is added to the ewsl@guations for the variable

I'*. The system in [33] corresponds to the chaiee= 1. f, G and H are strictly positive
and smooth functions of their arguments. The source t&ings; and S’ are defined in

terms of the Ricci tensoﬂgl), and the constraint variables

= — v N J— 1) ..
H 5 (’y RY + K*— K Km) : (3.87)
- o 9 . .
M; = DA —24;77 (Do) — gDz‘K +64;;D7¢, (3.88)
ct = T'-09;57, (3.89)

(3.90)
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Table 3.1: Boundary conditions for the BSSN variables. Nine sufficeeml necessary
conditions at the boundary for the geometric variables,re/hés the direc-
tion perpendicular to the boundary, adctands for the other two directions.

Function BC

« Oz =0

Ba (0 — V3r00y) Ba = fozl_’ﬁfm daa 0r 9,84 =0

K, Mi=0—K; =3 (bmij + mzjm)

Ay, Ago,a Vog=0—&11 =-nAB11
according to
S = FIRY —2m, (3.91)

. O TF
Sij = [R@(j) +3a05)CF (3.92)
S' = 2amAM; — dC'. (3.93)

The vacuum equations consist of the evolution equati8ng7(with S = 0, Sij =0,
S* = 0 and, of course, the requirement that the constraints gatisE 0, M; = 0 and
C; =0.

Jumping ahead, the boundary conditions for the BSSN systensistent with the
constraint equations, conditions are shown in TaBl&][ Here it can be seen that they
are nine conditions at the boundary. Four conditions mughipesed to the gauge func-
tions; the conditions on their behavior in the normal di@tis expected, as the gauge
functions should not push the boundary; the other two canditrelating their behavior
in the directions tangential to the boundary, were iniiallirprising and add additional
challenges at corners and edges of boundary planes forsZartordinates. Other three
conditions come from the requirement that the momentumtcaings have to be satisfied
at the boundary, and the following sections will explain ttmplementation for such a
condition. These conditions describe a relation betweend#rivatives of the trace of
the extrinsic curvature, and the divergence of its traee-foart. This condition has to
be satisfied over the entirety of the initial hypersurfaceml only demanding that such
relation must be preserved during the evolution. The lastdenditions relate to the ac-
tual two degrees of freedom that a gravitational problemimaise gauge. For this case,
| am considering a problem that is localized and isolatedt ttam already in a region
where the expected peeling behavior of the Weyl componemt$e consider valid, and
U, can be interpreted as describing the incoming gravitati@diation which is taken to
be bounded and negligible for the situations considereds;Thobtain conditions on the
electric and magnetic part the Weyl tensor at the boundagaim these conditions are
only valid in the linearized regime, and thus only valid inegime far from the highly
non-linear and dynamic parts of the simulation domain. l&rrhore, the requirements
on the gauge mean that for black hole initial data, theseitiond could introduce more
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noise and reflection than naive conditions in the regime witer difference between zero
shift and flat lapse is far greater than numerical error.

3.2.2 Propagation of the Constraints

It can be shown that the evolution equatio3s/) and the Bianchi identities imply that
the constraint variable®, M;, andC’ satisfy the following propagation system [127]

. 1 2

M = ——D7 (a*M;) — ae” A0+ KN, (3.94)
R ot 4 L1TF
oM, = ?DJ (™ *H) + aKM; + D' <a {ik(ﬁj)c ] > , - (3.95)
oC* = 2ami"M,;. (3.96)

By introducing the new constraint variable® = 9,C*, Z,; = Z¥5,;, one can reduce
Eqgs. 8.99 to the first order linear system

. 1 . o 2

dH = =D’ (aQMj)—ae_%A”Zij—k?aKH, (3.97)

d o? Jo( =2 i TF

oM; = D’ (a7 H) + aKM; + D' (aZ;) (3.98)
- ao [aka - @Zﬂ ,

dC* = 2amFFM,, (3.99)

00Zii = 2am0; M + lower order terms. (3.100)

Here, | have included in the right-hand side of EQ.90) the termd, ZF — 0,2
(which is identically zero sincé?i’“ = 9;C*) with an arbitrary factor. As | will show,
this o helps us to obtain a FOSH system. The all equations in thersy&y. 8.97) have
the form

9C = A(u)'D;C + B(u)C, (3.101)
where(C' are the constraint variables,= (a, ¢, 7;;, K, ij,fi) are the main variables,
and A’ and B are matrix-valued functions of for i = 1,2,3. DecomposingZ;; =
Z(m +Zj+ %%Z into its trace-free symmetric paléf(ij), its anti-symmetric partZ;;),
and its trace/Z = 7;;Z;;, and representing’ in terms of the variable€’ = (Ck, Sy =
OmH + Z, S := H + 2Z, M3, Z(ij), Z[ij])", the principal symbol (n) = A (u)n;
acting on the constraint variables is given by

ck 0 ck
S 0o S
- S5 (4mo — 1)n/ M, Sy
A = 9 ; , (3.102
() M; “| FniSe+ (1 —o)n Zij) T om' 2y M, (3.102)
Z (i) 2m (na M) Z (i)

Zlj 2mng; M
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wheren; = 79n; andn;n’ = 1 is normalized. This system is symmetric hyperbolic
provided the following inequalities hold:

dmo — 1 > 0, 2m(1l — o) >0, 2mo >0, (3.103)

for the free parameters. This is the case if and oniy it 1/4 and1/4m < o < 1. For
this case, in order to show well-posedness as in Sec@¥], a symmetrizeH = HT

is given by
A . 1 y
T ~ 2 2 ~
HC =7,;,C'CY i I—— U MM 3.104

V=0 ikzjiz 2 O kil

o 10 ZapZaay + 53" i) Zik -
whereH must be positive definite and satisfiEBA (n) = A (n)”H for the principal
symbol. Defining the energy norm

E= / CTHC Pz, (3.105)
Q
for the constraint variables on the dom&inand taking a time derivative to show bound-

edness, using E@(102 and Gauss’ theorem, | find

d
Eé’

2 / CTH [(A@' +B)8:C + Bc} &z + / cT(9HC)d*z (3.108)
Q Q
_ / [0, (cTHAC + CTRAC)
Q
+ T (f{B +BTH - 9,(HA® + H5) + atf{) C] &3z
< / CTHA (n)Cd?x + k€,
oN

where | have assumed that the shift is tangential to the kaynat the boundary and
wherek is a constant that depends only on bounds for the symmetris pthe matrix-
valued functionsB, H~19;(HA’ + H3'), andH ' 9,H. Therefore, if boundary condi-
tions on the constraint§' can be imposed such tha@ HA (n)C|sq < 0, the estimate
(3.106 implies that& (t) > e*£(0).

In particular, this guarantees that zero initial datadoyields C' = 0 for all ¢ > 0.
Explicitly,

il (3.107)

CTHA(n)C = 2n' M %@st +(1+0) 24 + 07
gives us the first restriction for the physical constraintpriovide constraint preservation
for the whole system with artificial boundaries for this doasit propagation system. One
possibility to meet this requirement is to require that thementum constraint variable
vanishes at the boundady/; |5 = 0. One way to enforce this is to code this requirement
into the evolution equation for the curvature scadiaat the boundary.
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More generally, | can look at the characteristic fields whach defined as the pro-
jections ofC' onto the eigenspaces &f(n) as in 3.104. The characteristic speeds and
corresponding fields are

4 o
u o= 0, (ck, Si, ?msg — (4mo — Dnin?Z;; | (3.108)
. 1
hE Zyin? | hﬁ hlﬂZ;d, <h@. hlj) — §hijhkl> Zkl> ,
dm —1 . 3 1 N
p = ta m3 , v = n M; + p— [552 +(1- U)nZnJZiJ} ,
_ (4 . 1, .
p = faym, V}( ) = h My, + \/—mn h? [(1 —0)Z(iky + O’Z[Z-k}} ,

whereh; = 5§?njn’“ denotes the orthogonal projector onto the space tangdrmgmhal
ton;. In terms of these fields, | have

CTHA(n)C = % 4m3_ ! {(v(ﬂ)2 - (V(_))Q] (3.109)

VI i T ) A(5) () ()
i RS A

Giving us the rest of the conditions for constraint preséowaon the boundaries for this
constraint propagation system. Therefore, | may also i@plos boundary conditions

[Vm n ClVH]ag —0, [vjﬁﬂ + CQVJ.(—)]aQ —0, (3.110)

wherec; ande; are two functions on the boundary with magnitude smallergoiaéthan
one. The particular casg = ¢, = 1 corresponds to imposing the momentum constraint
on the boundary.

3.2.3 Propagation of the Weyl Curvature

For the following section, | restrict my analysis to the case- 1. Furthermore, | consider
only small amplitude, high frequency perturbations of sth@mlutions. In this limit only
the principal part of the equations matters and the coefia@pearing in front of the
derivative operators can be frozen to the value of the smsithiion at an arbitrary point
p. By rescaling and rotating the coordinates as necessagycam achieve a space-time
metric that has the Minkowski form at poipt This means that the coefficients in front of
the derivative operators in the evolution equations camdieeh to the values

Oé:1, (bZO, "%j :5ij7 (3.111)

for a conformally flat system far away from the highly nonaneand highly dynamic
region of the simulation domain. In this way, the evolutiauations simplify to linear
equations with constant coefficients as | did in the previeetion B.1). Furthermore,
the domainQ = {(z,y,2) € R : = > 0} can be considered to be a half-plane with
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boundary at: = 0. Intuitively, the high-frequency limit is the relevant linfior analyzing
that the system is well posed and stable in a numerical @tiscregime.

For the following, | use the standard operators from vecatcidusgrad, curl, div
defined by

(grado); = 0;¢, (curlX); = g;ud* X!, divX = 9" X, (3.112)
for scalar and vector fields and X, respectively. They satisfy the identities

curlgrad¢ = 0, div curlX =0, divgrade = A¢,
curlcurlX = —-AX + graddivX, (3.113)

whereA = 99, denotes the standard Laplacian. | consider the followingegaization
from tensor calculus:

1
(gradX);; = a(in)—g@ja’ka, (curlT);; = 5kl(i8kTé—), (3.114)
(divT); = 9Ty,

whereT is a symmetric, traceless tensor field. By definitigmad X and curlT are
symmetric, traceless tensor fields. The following idesgitgeneralize the previous ones
from vector calculus:

curlgradX = % grad curlX , (3.115)
divcurll = %curl divT, (3.116)
divgrad X = %AX + égrad divX, (3.117)
curlcurll’ = —-AT+ ggrad divT, (3.118)

Notice that the identities3(115 3.117 imply thatcurl grad grad¢ = 0 anddiv grad grad¢ =
2grad A®/3. With this notation, the evolution equation3.77) in the high-frequency
limit are

& = —foK, (3.119)
G = GoB. (3.120)
B = H, <Aﬁ + %grad divj — %gradK) , (3.121)
4 = —2A+4 2gradf, (3.122)
$ = % (K + divg) (3.123)
A = %AW + gradl’ — 2grad grad¢ — grad grada, (3.124)
K = —Aa, (3.125)
I = A+ égrad divj3 — %gradK, (3.126)
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where fo, Go and Hy are the values of, G and H frozen at the poinp, and where for
notational simplicity | omit the tildes ove¥, A, andI" and continue to do so in what
follows. The linearized constraints are

H = %divf —4A¢p =0, (3.127)
2

M = divA — ggradK =0, (3.128)

C = I'=-divy=0. (3.129)

To establish a stable system in the high-frequency domdiogus my attention to the
linearized electric and magnetic parts of the Weyl cunatansor. In terms of the BSSN
variables, these symmetric traceless tensors can be defined

§ = A+ gradgradM, (3.130)
B = curlA. (3.131)

Using the evolution equation8.19 and the above identitie8,1153.118 | find that
these quantities obey the FOSH system

E = —curlB—i—ggrad./\/l, (3.132)
B = +curlé, (3.133)
M = div€. (3.134)

which is subject to the constraigtliv = 2div curlA = curldivA = curlM. The
corresponding symbol with respect to the one-fariis

£ = —nAB+gn®M, (3.135)
B = +nAE, (3.136)
M = n-E. (3.137)

where | use the notatiofn A B)y; := epn*Bl, (n @ M)y = n M j56im My,
(n-&); =n'€;. Decomposing, | obtain

M = M||7”L +My,
3
E = §5||Hn®n+2n®5|u_—|—5lL,
into pieces parallel and orthogonalnothis implies
=My,  By=0, M=¢),
. 1 3 . 1
fio=—gnABL+ M, BlL=gnAg,

El1=-—nABi1, Bii=nAE L,
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from which | obtain the characteristic fields

VED =g =My,

VEY = 4g F2mABL £3M,
Z(f) = BHL—%TL/\ML,
Vl(il) = &1L FnABLL,

with corresponding speeds indicated by the superscfipts and(0). Maximally dissi-
pative boundary conditions allow a coupling between theaimd outgoing fields of the
form V+D = ¢V + @, wherec is a constant which is smaller than or equal to one in
magnituden is the unit outward normal to the boundary afids boundary data. The
fieIdsVl(f) are related to the (linearized) Weyl scaldrgand ¥, constructed from a null
tetradl, k, m,m with [ = 0y + n, k = 0yn through

v — (@emem+ Tgmem), VY =(Tumem+ Tmem).

In particular, the allowed class of boundary conditions esak possible to freeze the
Weyl scalarl at the boundary to its initial value by imposing

v —y Ul (3.138)

This condition has been shown to yield a reflection coeffidieat decays as fast 88R)*

for monochromatic gravitational radiation with wave numideand a spherical outer
boundary of radiugz [84, 131]. It has also been tested numerically in [111] arahshto
out-perform other currently used boundary conditions. BpasingV (1) = V(=1 it

is also possible to set the constraivt to zero at the boundary. On the other hand, the
form of Vl(ﬂ) does not allow us to set the orthogonal compongtt,, of the momentum
constraint variable to zero.

For this reason, | perform a slight modification to the pragiamn system3.132 by
using the constraitdivBcurlM = 0. For this, letn := 0,. n is a unit vector field,
which, at the boundary, coincides with the unit outward reirta 0€2. Then, replace Eq.
(3.132 with

. 1
£ = —curlB+ ggrad./\/l +n® [n A (divB — §curl./\/l>] . (3.139)

With this modification | have.‘fHL = M. The time-derivative of the other fields remain
unchanged. The characteristic fields with respect tre the same as before except for
Vfﬂ) which has to be replaced by

v =g M, (3.140)

Therefore, it is now possible to impose the momentum coinstaathe boundaryM = 0
by requiringV ) = V(=1 and VL(“) = Vfl). In order to show that this leads to a
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well-posed system | prove that these boundary conditiaygther with thely-freezing
boundary condition3.138 are maximally dissipative conditions and that the modified
evolution system3.132 3.139 is still symmetric hyperbolic. For this, it is convenient t
replaceB by the new variabléC defined by

K:=B-n®nAM). (3.141)

In order to write down the principal symbol of the resultingkition equations, | choose
standard Cartesian coordinatesy , z on {2 such that. = 0,.. The principal symbol with
respect to an arbitrary one-form then reads

gxx = _gABmA,CBJ: +ma My — mAMA 5 (3142)
Kz = —ePmalpy, (3.143)
My = maMy+mPEas, (3.144)
. R 1 1
& = —€PmcKpp — SepmemcKas +meMp + ;mpMa, (3.145)
. R 1
Kog = +e“Pmeéps + iagmcgm , (3.146)
. . 1
Mp = muEp+miEap — §m35m : (3.147)
. R 1
gAB = —m$€C(A IC%) + €C(A mC,CB)JC — §5AB€CDmchDx (3.148)

1
+ muMp)— §5ABmCMC>

. A 1
Kap = +meeca€h —ecamEpy + §5ABsCDmchm , (3.149)
(3.150)
where the indicesl, B, C, D refer to the coordinpte@andz, and | have definedp :=
EAB%6A36CDECD and an analogous relation fiii4 g. It is straightforward to verify that
this symbol is symmetric with respect to the symmetridedefined by
UTHU = &2, + K2, + M2 + 2048 (E,u&up + KoaKap + MaMp)3.151)
+ 204068P (éABéCD + /CABICCD) )

whereU = (€, K, M)™. In a coordinate-independent notation, | may also write

UTHU = &) * + 112 + My P + 218 L[+ 20 L P+ 2AM P+ €L P+ 1KLL

(3.152)
As | did for the harmonic system, in order to demonstrateypetiedness mathematically,
| want to obtain a bound on the time dependence of the enertheaystem. To do this |
define the energy norm, as before

N = / UTHU (3.153)
Q
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and take the time derivative to obtain the estimate

dy _ _ / (260 My + 48,4 M + 46472 ,40K | dPa (3.154)
o0

dt
1 _ 1 -1
= [ (WO - OR) + (R - v )
+ (VR = VR dyds
= —/ O|V£11)|?Odydz+/ 0|V£Jil)|?:odydz

2 / Wol?_odydz
x=0

IN

if the boundary conditions\l, = 0 and @.13§ are imposed. Therefore, | obtain an
L?-estimate for the curvature variablés B, M. In view of Egs. 8.13Q 3.131, 3.129
this yields L2-estimates ford, curl4 anddivA provided | have appropriate estimates
for the lapse(, and the trace of the extrinsic curvatuf€, As for the harmonic system,
by integrating the evolution equations in time one obtdiRsestimates for, grad, -,
curly, div~ provided suitable estimates are availabledpf andg. This will be shown

in the next section.

These estimates are sufficient to bound ZRenorm of the full gradient ofd. OnR3,
it can be proven that ah? bound oncurlA anddivA imply an L?-bound ongradA.
However, this is not true in general on the half-pl&hd-or example, lek be an arbitrary
harmonic function on which decays exponentially to zerdzas— inf and letA :=
gradgrady. Then,curlA = 0 anddivA = 2gradAyx/3 = 0, but A # 0 unless
boundary conditions at = 0 force x to be linear. Thus conditions need to be specified
on all boundary planes for well-posedness to hold.

3.2.4 Propagation of Lapse and Shift

In this section | analyze the “gauge sector”, that is the agapion of lapse and shift. |
continue to work with the assumptions of the last section= 1, and small amplitude,
high frequency perturbations to smooth solutions so thaetllution equations for the
lapse and shift are given by Eqs3.119 3.120. | will also use the corresponding evo-
lution equation for the trace of the extrinsic curvature, E2j125. It is useful to define
the quantities:a := f; 'grada, D := G~'div@, R := G~ 'curlB. Thus from these
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definitions and Eqs3(1193.125 | obtain the following first-order system

a = —foK, (3.155)
6 = GyB, (3.156)
. 4
B = ko (—3curlR + 4gradD — G—gradK> , (3.157)
0
R = curlB, (3.158)
D = divB, (3.159)
K = fydiva, (3.160)
a = gradK (3.161)

wherekg := GoHy/3 and where | have used the identi8.113. This system is almost
in symmetric hyperbolic form— only the last term on the rigland side of the evolution
equation forB is an exception. However, if | assume that, # f, and replaceD and B
by the new fields

AHoK AH,
F=D+ 0 Ci=B+ 0Joc (3.162)

(fo —4ko)’ (fo —4ko)’

and use the constraiffcurla = curl grada = 0, | can rewrite the system in the form

K = fodiva, (3.163)
a = gradK, (3.164)
C = ko(—3curlR + 4gradF) (3.165)
R = curlC, (3.166)
F = divC, (3.167)

which is now manifestly symmetrizable hyperbolic. If | inttuce the energy norm as in
the previous sections

1
E:= / (K? + fola|* + C? + 3k0|R|* + 4k F?) d°x (3.168)
Q

the evolution equations then imply that

d
—F
dt

/ div (foKa + 4koFC + 3koC A R) d*x (3.169)
Q
= — / (foKa; + 4k FCy + 3k0(C A R),) dydz .

=0

In terms of the characteristic fields this becomes

Y& .= K + \/%a” , WH(:I:) = CH + 2\/I£_0F, WJ(_:I:) =C | FV3kon AR,
(3.170)
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where agaim = 9., so the time derivative of the energy norm becomes

d 1

dg _ 1 Gy

B = 4/120(\/f0[|Y 2 -y |] (3.171)
+ 2k W= (WP VB (W (WD) dydz.

An interesting possibility to bound this solution then dstsof the following boundary
conditions

4/10

Or0v = 0, ﬂx =0, (at - \/3%081)@4 = m

Oac, A=y, z.
(3.172)
Thus implying thaty ) = vy (), W||(+) = W”Hand Wt = 0, which makes the
boundary term negative definite. Furthermore, these donditallow for the control the
normal component of the shift, which is what is wanted. Hosvean alternative choice

for gauge conditions at the boundary could consist of
Oy, =0, B: =0, (0 — V/3ko0x)Pa =0, A=y, z. (3.173)

which impliesy (+) = v(=), Wﬁ” = WH(_) andW") = W) and makes the boundary
term zero.

In this way, | obtain anl.?-estimate for the field& = — f; ', grada, B = G;' 4,
curlp anddivB. With the boundary condition: = 0 this implies anL?-estimate for
the symmetric and traceless gradientad, of the shifts. This follows from the integral
identity

/Q|gradﬁ|2d3x = /Q<%|curlﬁ|2+§|divﬁ|2> 3z (3.174)
= [ (30u8, — 5,045 dyiz.
x=0

which follows using twice integration by parts. Therefor@btain an estimate for the
H'-norms of lapse and shift. The second derivatives ahd 3 can be estimated by first
taking time and tangential derivatives of the evolutionatns and boundary conditions,
and repeating the above analysis to obtaiLamound fori and 3 and anH* bound for
dac and 946 and then using the evolution equatiofis= foAa and 3 = ro(3A8 +
graddivi — 4gradK) in order to estimate the second normal derivati®e8, o and
0,0,3. In this way, one arrives at al2-bound fora and3’. In the fully-discrete system,
this of course, only holds if you have finite differencingretils whose operators obey
SBP as described in the previous section, and, of coursg,itihe linearized regime,
where an assumption of flat lapse and negligible shift igivalthin numerical error.

3.2.5 Numerical Implementation

| have derived boundary conditions involving the geomefigtds and their derivatives
evaluated at the boundary. Those conditions coming fronfabiethat the momentum
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constraint has to be preserved at the boundafylsn, = 0, should not be difficult to
implement numerically, as long as these conditions aredyresatisfied for the initial
hypersurface, so one must be careful to see that it is alsallyisatisfied at the bound-
aries. Once this is done, the condition must hold throughtlmeitevolution. But this is
usually checked at every few steps, as a measure that thieaiotssare being preserved,
so it is only needed to see that this is so at the boundarieekhsSimply put, from the
momentum constraint, | have obtained the right-hand-sifelitions

)

Apy = —(curlA),, (3.176)

) 1 3. y o
K = K,——K=3 (DJAW» 464, + 6AW—D3¢) (3.175)

With respect to the gauge conditions, the ones referringealirection normal to the hy-
persurfacef, = d,«a = 0, should not present any implementation problem. If ondsstar
with initial conditions considering that the lapse is apgmuately one and shift is vanish-
ing at the boundary and the normal component of the lapsddhemain zero. However,
for boundaries in the simulation domain in the region whaeslapse is different from
one by much more than numerical error, and the lapse or tlieismapidly evolving,
these boundaries will perform much worse than standarétiaeliconditions.

With respect to the other two conditions, if | consider thgt 4 = 0, and that initially
the shift was zero, one has to implement that it remains dwedbddundary. If | chose the
other two conditions(9; — v/3k00, )B4 = fo‘*_“fm daa, they are more robust and, by con-
struction, they are consistent with the evolution equatosrihe shift, but their numerical
implementation is more challenging. However, wh&fg4 = 0 is not consistent with the
shift conditions for the system, this choice is not stableus'a more freely evolving con-
dition such agd; — v/3k00:)6a = f04f0 Jdaa is the better choice for most simulations

. . - 4/{10
using a Gamma-driver shift.

It is of course the final test of this proposal, to show thas ihdt only a theoretical
discussion, which is in itself valid and important to knovatttone works with a clean
problem, but also it is has to be seen directly during theadctumerical evolutions.

3.2.6 Discussion

Besides the importance of having a well-posed system, tharpractical consequence of
defining correct conditions at the boundary. This is the tiaat this choice allows one to

place the boundary conditions, in principle, in any placekgtthe linearized assumptions
hold, thus reducing the need for making large humericalsgwith the consequence of
savings in computational resource requirements needenhtdede a given problem.

The question is not how to avoid the problem of artificial outeundary well-
posedness by creative ways, for instance adding numergsapdtion so that almost noth-
ing arrives at the boundary, but the purpose should rathés bizectly face the problem
and having, at least in the theoretical level, a set of egnatthat are well defined. It
took some time for the numerical community to get convincktthe practical advantages
of having a well-posed system of equations, and for a timesatgteal of attention was
focused on the developing powerful codes. During this tievesal mathematical aspects
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were neglected. Learning from that experience, it seensonadle to insist on the need
for evolving with a clean and properly posed system of equati

In the present work | have derived for the BSSN formulatiom tiecessary boundary
conditions which preserve the constraints and lead to desit@bal-boundary value prob-
lem in the linear limit for spacetimes which are the confdiyniat. These conditions
are given in terms of the variable fields and its derivativetha boundary, and | have
shown that the final system is indeed symmetric hyperbolicpaaserves the constraints.
Notice that the needed conditions at the boundary do nohiewall the geometric quan-
tities nor their derivatives, only the normal componenthaf shift, 5%, the derivative of
the lapse in the normal directiof,.«, a relation between the advection derivative of the
tangential components of the shift and the the derivativiheflapse in these directions;
three relations among the derivative of the trace of extriogrvature, the gradient of the
symmetric traceless tensét;j, and the conformal functior; and two relations between
the temporal and spatial derivative of the normal compooémhe symmetric traceless
tensorflm. Thus, unlike standard methods, one does not over-spdwfgdnditions on
the boundary surface.

For sufficiently distant boundaries in the linearized regjiine boundary conditions
described in the present work will help to make the numersalutions of relativistic
spacetimes more robust. In terms of practical gain, thesgllisnuch work to be done in
order to quantify the importance of using adequate boundanglitions. However, any
improvement in accuracy and efficiency is a valuable coutidin for the current state of
the field of numerical relativity.



Chapter 4

Physics from Numerical Simulations

Binary black hole systems are expected to be one of the &isbrepurces of gravita-
tional waves and are therefore the subject of intense iigaigin. With earth-based
gravitational-wave detectors now working at design-diMityi and a space-borne detec-
tor in planning stages, the need for reliable templates tasee by detectors in matched
filtering techniques has made the need for numerical asamere urgent. Using numer-
ical methods developed in the past four years [19, 20, 13#kthas been an explosion
of results (seee.g.,refs. [9,59, 133—-143]). These developments are importardtfleast
three different reasons. First, they allow for improved péates to be used in the analysis
of the data coming from the detectors. Second, they allowgs®f General Relativity
in regimes that have previously been inaccessible. Lasdlyd the topic of this chapter —
they can provide important astrophysical information.

Recent progress in numerical relativity has solved the Iprobof stably evolving
black hole initial data for useful timescales. This has @&gktine door to studies of phys-
ical phenomena resulting from strong-field gravitatioma¢iactions and to extended and
systematic studies of these systems. A result of partidotarest to astrophysics is an
accurate calculation of the recoil velocity and spin of tmalffimerged black hole gener-
ated during an asymmetric collision of a black-hole bindtris well known that a binary
with unequal masses or spins of the individual bodies wiiate gravitational energy
asymmetrically. This results in an uneven flux, which givesealinear momentum to
the final black hole, often called a “kick” [144, 145]. Whilstanations of kick velocities
have been available for some time [146—148], the largesiopéne system’s acceleration
is generated in the final orbits of the binary system, and els sequires fully relativistic
calculations to be determined accurately. General réhatalso predicts that black hole
spins and their angular momenta interact due to frame dngggid cause ‘spin-up’ and
‘spin-down’ effects, not predicted by classical gravitjaeTknowledge of both the ‘kick’
velocity and of the final spin could have a direct impact ordigsl of the evolution of
supermassive black holes and on statistical studies onythentics of compact objects
in dense stellar systems, as well as significant effect omvthveform and impact on pa-
rameter estimation for gravitational wave detectors, Whidll be discussed in the next
chapter.

It can be convenient to think of the inspiral and merger of black holes (BHs) as

99
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a mechanism which takes, as input, two BHs of initial maddes M, and spin vectors
S1, Sy and produces, as output, a third BH of madg, and spinSg,. Since most or all
of the eccentricity is removed quickly by the gravitatiomadliation reaction during the
inspiral [149], in conditions of particular astrophysidaterest, the inspiral takes place
through quasi-circular orbits. Furthermore, for nonspignequal mass BHs, the final
spin does not depend on the value of the eccentricity as Isrigignot too large [150].
The determination of\/g,, and Sg, from the knowledge of\/; » and S, », is of great
importance in several fields. In astrophysics, it providdgsrimation on the properties
of isolated stellar mass BHs produced at the end of the egoluf a binary system
of massive stars. In cosmology, it can be used to model thehdison of masses and
spins of the supermassive BHs produced through the merggalakies. In addition,
in gravitational wave astronomy, tteepriori knowledge of the final spin can help the
detection of the ringdown. What makes this a difficult probles clear: the space of
initial parameters for the final spin has seven dimensioas the mass ratig = M, /M,
and the six components of the two spin vectors). A number alfjéinal approaches have
been developed over the years to determine the final spierediploiting the dynamics
of point-particles [4, 151] or using more sophisticated rapphes such as the effective
one body (EOB) approximation [152]. Ultimately, howevesngutingas, = San /M2,
accurately requires the solution of the full Einstein e@ret and thus the use of numerical
relativity simulations. Several groups have investigdtes problem over the last couple
of years [1,8,9,87,153].

In this section | will discuss work done in collaboration ituciano Rezzolla, Enrico
Barausse, Ernst Nils Dorband, Denis Pollney, Christiars®eig, Sascha Husa, Peter
Diener, and Erik Schnetter to study the parameter spaceaafyjpblack hole collisions in
vacuum. | will discuss the simulations done to cover thisesedimensional parameter
space, done with the code described in Sect®d [ | will then discuss how we derived
phenomenological formulae for the prediction of final régelocity and spin of a merged
black hole from physical assumptions and fits to our numbyiggnerated results. This
section is based upon papers written with the aforemerdipeeple and myself. The spin
results may be found in the works [8, 154]. The kick resulty ina obtained from [87,
155].

4.1 Simulations

Over the past few years, a number of simulations have beeiedaut to determine the
recoil velocities for a variety of binary black-hole sys&niNon-spinning but unequal-
mass binaries were the first systems to be studied and severed have now provided
an accurate mapping of the unequal mass space of paramk2ér4 39, 156]. More re-
cently, the recoils from binaries with spinning black hofese also been considered by
investigating equal-mass binaries in which the spins obthek holes are either aligned
with the orbital angular momentum [155, 157], or anti-aéidn(i.e. S; is parallel toL
andS; = —S55). In the first case, a systematic investigation has showmnthigalargest
recoil possible from such systems is on the ordetifkm/s [87]. In the second case,
instead, specific configurations with spins orthogonal &dtbital one have been shown
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to lead to recoils as high &00km /s [158, 159], suggesting a maximum kick of about
4000 km /s for maximally-spinning black holes [160]. Recoil veloesiof this magnitude
could lead to the ejection of massive black holes from thdilhggalaxies, with impor-
tant consequences on their cosmological evolution. Beyboat] studies have been, and
are still being performed to cover the space of misaligned &igned or anti-aligned)
and unequal spins, and unequal masses with spins. Challstiigemain to extend to
extremal spins{; ~ 0.9) and low mass ratios;(=~ 0.1) for numerical simulations. How-
ever, by fitting to the results for the range and dimensiorth®fparameter space we are
able to cover, and by matching to the extreme mass ratioraismse (EMRI) for which
we may use a point particle solution, we can fairly accuygpeédict final spin and recoil
velocity for the entire space of parametets; (as;, andq).

The numerical simulations have been carried out using thATTECcode described
in Section P.7], a three-dimensional finite-differences code using thet@Computa-
tional Toolkit [91] and Carpet mesh refinement infrastroet{93]. The main features of
the code have been recently reviewed in [87], where the cadeében employed using
the “moving-punctures” technique [20, 59] described int®ec[2.4.4. For aligned and
anti-aligned spins, initial data consists of five sequemgésconstant orbital angular mo-
mentum, which is different from sequence to sequence. I thied ra-sequences, the
initial spin of one of the black holeS, is held fixed along the-axis and the spin of the
other black hole is varied so that the spin ratig'a, takes the values betweenl and
+1, with a; = S;/M?. In thet-sequence, instead, the spin with a negatie@mponent
is held fixed, while in thes and u-sequences; /as = 1 and —1, respectively. In all
those cases, the masses afe= M/2 = 1/2. | performed further simulations for un-
equal masses with aligned spins, and two simulations witaligined spins and equal
masses, and two simulations with spins selected to mergeSebavarzschild§ ;;,, = 0)
as predicted by our formula.

Forr, ra, s, t, andu sequences defined in Tabke 2) the orbital initial data param-
eters we use the effective-potential method, which allomes @ choose the initial data
parameters such that the resulting physical parametays rhasses and spins) describe
a binary black-hole system on a quasi-circular orbit. Fer tiisaligned and unequal
mass runs higher accuracy was required and | generateditia¢ data by integrating
post-Newtonian equations to obtain the inspiral pararaefEne free parameters are: the
coordinate location€’;, the mass parametets;, the linear momentg;, and the spin§;.
For the aligned and anti-aligned runs quasi-circular sriere then selected by setting
p1 = —p2 to be orthogonal t&€; — C1, so thatl. = C; x p; + C; x p2 is the orbital an-
gular momentum. The initial parameters for the aligned aighligned spin simulations
are collected in the left part of Tab#e2 while the right part reports the results of simula-
tions. For all simulations herein, we have employed 8 levkisfinement and a minimum
resolution0.024 M, which has been reduced @018 M for binariesr5, 6. Our results
for the u-sequence differ slightly from those reported by [157],qaoly because of our
accounting of the integration constant]if;.| [87].

We evolve a conformal-traceles8 4 1” formulation of the Einstein equations [27—
29, 95] described in Sectior2 3.4, in which the spacetime is decomposed into three-
dimensional spacelike slices, described by a metricits embedding in the full space-
time, specified by the extrinsic curvatufé;, and the gauge functions (lapse) and3’
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Figure 4.1: Position in the(a;, a2) space of the five sequencesra, s, ¢, andu for
which the inspiral and merger has been computed.

(shift) that specify a coordinate frame. The particulateyswhich we evolve transforms
the standard ADM variables as follows. The 3-metyigis conformally transformed via

1 - _
¢ =y lndety,  Fij=e s, (4.1)

and the conformal factap evolved as an independent variable, whergass subject to

the constraintlet 7;; = 1. The extrinsic curvature is subjected to the same conformal
transformation, and its traae K;; evolved as an independent variable. That is, in place
of K;; we evolve:

y ~ _ 1
K =tr Kij = .gZ]Kijy Aij =€ 4¢(K¢j — g’yin), (42)
with tr flij = 0. Finally, new evolution variables
IV = 9%, (4.3)

are introduced, defined in terms of the Christoffel symbékhe conformal 3-metric.
The Einstein equations specify a well known set of evolugquoations for the listed
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variables and are given by

(8 — Lp) 7ij = —2a Ay, (4.4)
(O — Lp) ¢ = —éocK, (4.5)
(0 — L) Aij = e *[—D;Dja+ aRy]"F + a(K A — 24, AF)), (4.6)
(0~ £5) K = ~D'Diac + a(Ay A 1 1K), @.7)

- . ) - Lo~ . 2. )
Ot = 37%9,018" + 370,08 + FO,T —T99;8" + 300,

Wl

— 2/1“8]»04 + 2«

—~

- . o 2 ..
T AR 1 64190 — 3770, K), (4.8)

where R;; is the three-dimensional Ricci tensdp; the covariant derivative associated
with the three metricy;; and “TF” indicates the trace-free part of tensor objectse Th
Einstein equations also lead to a set of physical constegjngations that are satisfied
within each spacelike slice,

H=R®) + K* - K;; KV =0, (4.9)
M =D;(KY — 1Y K) =0, (4.10)
which are usually referred to as Hamiltonian and momentunsicaints. HereR(®) =

Riﬂij is the Ricci scalar on a three-dimensional time slice. Oectje choice of evolu-
tion variables introduces five additional constraints,

det ﬁij = 1, (411)
tr Aij = 0, (412)
[ = 39 (4.13)

Our code actively enforces the algebraic constraidt3lf and @.12. The remaining
constraints}4, M, and @.13), are not actively enforced, and can be used as monitors of
the accuracy of our numerical solution. See [33] for a moram@hensive discussion of
the these points.

We specify the gauge in terms of the standard ADM lapse fangiti, and shift vector,
(% [161]. We evolve the lapse according to tHef log” slicing condition:

Oror — B0 = —2a(K — Ky), (4.14)

whereK) is the initial value of the trace of the extrinsic curvatuaad equals zero for the
maximally sliced initial data we consider here. The shivslved using the hyperbolic
T'-driver condition [33],
B —30;8 = “aB', (4.15)
HB' — 3 o;B" = oI - oI — B, (4.16)
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wheren is a parameter which acts as a damping coefficient. The ddraetrms on the
right-hand-sides of these equations were not present irigaal definitions of [33],
where co-moving coordinates were used, but have been adtedinhg the experience
of [60, 132], and are required for correct advection of thegbure in “moving-puncture”
evolutions.

Spatial differentiation of the evolution variables is merhed via straightforward
finite-differencing using fourth-order accurate centestehcils for all but the advection
terms for each variable, which are upwinded in the directibtine shift. Vertex-centered
adaptive mesh-refinement (AMR) is employed using nestets §@i2, 93] with & : 1 re-
finement for successive grid levels, and the highest résalebncentrated in the neigh-
borhood of the individual horizons as described in Sect@d][ Individual apparent
horizons are located every few time steps during the ewliyir0, 162] by the method
described in Sectior2[6.]].

The time steps on each grid are set by the Courant conditidnttars the spatial
grid resolution for that level, with the time evolution bgipnarried out using fourth-order
accurate Runge-Kutta integration steps as in SecBidng. Boundary data for finer grids
are calculated with spatial prolongation operators emptp$th-order polynomials, and
prolongation in time employing 2nd-order polynomials. Thger allows a significant
memory saving, requiring only three time levels to be stpvéth little loss of accuracy
due to the long dynamical timescale relative to the typical time step.

4.1.1 Initial data

The initial data are constructed applying the “puncture'thiod [49], which uses Bowen-
York extrinsic curvature and solves the Hamiltonian caistrequation numerically as
in [52]as discussed in Sectiof.f].

We have considered a sequence of binaries for which thalisfiin of one of the black
holes is held fixed a$, /M? = 0.146 e., and the spin of the other black holeSs/M? =
(a1/a2)S2/M?, where the spin ratia; /a; takes the values-1, —3/4,... ,3/4,1, and
M is the sum of the black hole masséd, = M; + M. Thus the black hole spins are
anti-aligned whem; /a2 is negative and aligned when it is positive. In all casesnital
data parameters are chosen such that the black hole masses ar

Az’ 47‘(’52 1
M; =/ L= 4.17
167 * A; 2 ( )

[163, 164] whered; is the area of thé-th apparent horizon as derived in Secti@rb| 3.

For the orbital initial data parameters | use the effectigteptial method introduced
in [165] and extended to spinning configurations in [166]e Effective potential method
is a way of choosing the initial data parameters such thattipaired physical parameters
(e.g. masses and spins) are obtained to describe a binaklodde system on a quasi-
circular orbit.

The free parameters to be chosen for the puncture initial deg: the puncture co-
ordinate location€”;, the puncture mass parameteris, the linear momentg;, and the



Table 4.1: The puncture initial data parameters defining the binarfiesation+x /M, linear momentatp/M, mass parameters; /M, spins
S;/M?, dimensionless sping, ADM massM, .., measured at infinity, and ADM angular momentury,,, computed from Eq.4.49).
Note that we sed/; = M, = 1/2 [cf, Eq. @.17)].

S0T

Model j:x/M ﬂ:p/M ml/M mQ/M Sl/M2 52/M2 aj as MADM/M JADM/M2
r0 3.0205 0.1366 0.4011 0.4009 -0.1460 0.1460 -0.5840 0.5840.9856 0.8252
rl 3.1264 0.1319 0.4380 0.4016 -0.1095 0.1460 -0.4380 0.5840.98586 0.8612
r2 3.2198 0.1281 0.4615 0.4022 -0.0730 0.1460 -0.2920 0.5840.9856 0.8979
r3 3.3190 0.1243 0.4749 0.4028 -0.0365 0.1460 -0.1460 0.5840.9850 0.9346
rd 3.4100 0.1210 0.4796 0.4034 0.0000 0.1460 0.0000 0.5840 859.9 0.9712
r5 3.5063 0.1176 0.4761 0.4040 0.0365 0.1460 0.1460 0.5840 86B.9 1.007
76 3.5988 0.1146 0.4638 0.4044 0.0730 0.1460 0.2920 0.5840 864.9 1.044
r7 3.6841 0.1120 0.4412 0.4048 0.1095 0.1460 0.4380 0.5840 86D.9 1.081
r8 3.7705 0.1094 0.4052 0.4052 0.1460 0.1460 0.5840 0.5840 87R».9 1.117
r0l 41924 0.1073 0.4066 0.4065 -0.1460 0.1460 -0.5840 0.5840.9889 0.8997
r0s 2.8186 0.1441 0.3997 0.3994 -0.1460 0.1460 -0.5840 0.5840.9849 0.8123

suonenwis T'y
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individual spinsS;. Since | am interested in quasi-circular orbits we work ia #ero
momentum frame and choogge = —p- to be orthogonal taCs — C;. The physical
parameters we want to control are: the black hole mass 3#tia\/,, the orbital angular
momentumL = C4 x p; + Cy X ps (see for example [165—-167]) and the dimensionless
spin parameters; = S,;/M?. In order to choose the input parameters that correspond to
the desired physical parameters | have to use a non-lineafiraling procedure, since
the physical parameters depend non-linearly on the inpainpeaters and it is not possible

to invert the problem analytically.

As detailed in [166], when the black-hole spins are takenaaameters, it is possible
to reduce the number of independent input variables, scathatgiven separatio@ =
|C2 —C1|/mjy, the independent input parameters arez m, /ms and the dimensionless
magnitude of the linear momentupym;. Using a Newton-Raphson method, | solve
for g andp/m; so thati; /M, = 1 and the system has a given dimensionless orbital
angular momentumZ /(M) whereu = myms/M? is the reduced mass. For such a
configuration the initial data solver [52] returns a verywete value ford/, ,,,, which
together with the accurate irreducible mass calculatedhvéyapparent horizon finder [70,
162] makes it possible to calculate an accurate value ofithergsionless binding energy

Ey/p = (Mypy — My — Ma)/p. (4.18)

The quasi-circular initial data parameters are then obthiny finding the minimum in
E,/p for varying values ofC while keeping the required orbital angular momentum
L/(uM) constant.

| chose a fixed orbital angular momentuii(..M ) = 3.3 for the quasi-circular orbit
initial data parameters. This value was chosen to ensuretib@el0 would have enough
evolution time for an accurate kick measurement, while efsime time mode{ would
not require too much evolution time due to orbital ‘hang-affects for aligned spins. In
order to check the influence of the evolution time before g&uon the kick measurements
of the 0 model, we also calculated initial data forr@ configuration at larger initial
separationr0l and at smaller initial separatiots. The parameters for all the initial data
sets are shown in Tablel

Note that the physical mag¥; of a single puncture black hole increases when the
spin parameter is increased if the mass parameteis kept constant. For that reason
obtainingM; = M, in general requires thahb, # mo. Even in the case where the spins
have the same magnitude but different directions, the taokbholes will have different
spin-orbit interactions leading to slightly different igal masses ifn; = mo. For this
reason, the initial data for0 in Table4.1 has slightly different puncture mass parameters
my # ms. In contrast, in model8 the black holes have identical spin parameters and thus
also the same spin-orbit interaction, resulting in idealtinass parameters,; = mo. For
this reason | wrote a Newton-Raphson solver to iterate viiéhquasi-circular puncture
initial data solver to solve for the puncture masses to agievo the desired ADM masses
with spin accounted for.
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4.1.2 Convergence tests

As discussed in sectiorz 5.1 the finite difference error of the derivative stencils uged
the numerical algorithm i©(h*), while the error in the time-interpolation stencils used
for mesh refinement boundary points@§At3). Thus the expected theoretical conver-
gence rate is three. However, it is only time-related op@matwhich are at third order,
and since the time step which we use is smaller than the gadirsgp and much smaller
than the dynamical timescales, we can expect that the evafficient of the leading or-
der term is quite small. Third order convergence is expedtgthg time-periods when
the system goes through rapid dynamical changes, such gduthge or merger, and
fourth-order is expected at early times in the simulation.

The proper convergence of the code was established usirgrtaey system-0, for
which we have carried out evolutions using 8 levels of me§hement with fine grid-
spacings ofh/M = 0.024, 0.018, and0.012 (i.e., resolutions “medium”, “high”, and
“very-high”, respectively, where “low” refers th = 0.030 which was deemed to be of
insufficient accuracy). Other refinement levels have reé&ola that are half of the next
finest grid. The refinement levels on the initial slice areugeto be identical for the three
resolutions and their locations and sizes evolve accortdiige same algorithm in each
case.

We focus on the convergence of a number of different aspédteeaode. The first
of these is the degree of satisfaction of the Einstein egustiwhich can be partially
determined by examining the Hamiltonian and momentum caims$ @.9-(4.10. A
more stringent requirement is to evaluate how well the Eingensor satisfies the vacuum
condition,G,3 = 0. For this we define the positive definite quantity

(4.19)

o= VG%, +G% + -+ G2, outside appar. horizons
10 inside appar. horizons .

In computing norms over the entire grid, we find it useful tosknaut the interiors of the
horizons, where the error at the puncture locations — wisgtot expected to converge —
can dominate over more relevant errors in the physicalledadble domain. In order to
computeG, 3 we compute the-derivatives of the ADM metric, lapse and shift, then con-
struct the4-derivatives of thet-metric from which we can compute the Riemann tensor
and then finally obtairtx, 5. Time-derivatives are taken using three time-levels, erewot
around the past time-level. Spatial derivatives are talsgmgufourth-order accurate cen-
tered stencils. Thus the finite-difference error in commiti, s is O(At?) in time and
O(h*) in the space dimensions. Effectively we see a minimum ofithider accuracy for
this quantity, indicating that the coefficient of tii% A¢?) error term is small compared
to the higher-order terms.

Since the metric gradients and hence the truncation errersha largest near the
black-holes, through the., norm of @.19 we effectively monitor that the Einstein tensor
converges near the horizons for the duration of the evaiutidhis is a strong test in
comparison with the common use of the norm, as the latter tends to dilute errors in
small regions or 2D surfaces such as grid boundaries, asattgepormalized over the
entire grid volume. By contrast, the,, norm measures the worst error on the grid, which
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by propagation of error will also suffer if there are any rammvergent regions on the
grid.

This convergence ofr is summarized in Figd4.2 which reports the time evolution
of the L., norm of @.19 at the medium and very-high resolutions. Also indicatethwi
dashed and dotted lines are the expression foLthaorm of @.19 at the very-high res-
olution when rescaled for third (dotted line) and fourtller convergence (dashed line).

There is a period at the beginning of the evolutions wherénitial data construction
prevents fourth-order convergence. This is due to the faat the initial data is com-
puted by an interpolation of the results of a spectral saiveo the finite difference grid
which is used for evolution. An error is introduced becausckeep fixed the number
of spectral coefficients and because the Cartesian gridsodm not coincide with the
spectral collocation points of the Chebyshev polynomigdsplting in a certain amount
of high-frequency noise that spoils the convergence forestime at the beginning of
the simulation. Numerical dissipation and the constraarhgding built into the evolution
system implies that the evolution quickly adjusts itselfattiually solving the Einstein
equations to a good accuracy. The effects of these initiistent modes can last for
different amounts of time for the different resolutioesy, ~ 10 M for the medium res-
olution and~ 30 M for the very-high resolution.

Soon after this transient has disappeared, the code shewexgected fourth-order
convergence, with the largest values of the violation foumithe vicinity of the apparent
horizons, where the gradients in the metric are the steepbstviolations grow rapidly
with time as the binary inspirals and the largest values efuiblation of the Einstein
tensor are seen at the time of the merget, 109 M, with values as large &(300). Such
violations are essentially confined tgiaglegrid point on the trailing edge of the apparent
horizon and are produced by the very steep gradients in tfte €hearly, violations of
this magnitude would not be revealed when looking atihenorms and are a source of
concern. However, as we will show later, such violations dbpnopagate away from the
horizon to affect the fourth-order convergence of the wanres in the interior and sliding
to thrid order near the boundaries.

At the time of the merger the excision of a common apparenztieifrom the calcula-
tion of the L, norm is responsible for the decrease by about four ordetseofiblation.
After this, the L., do not grow further in time for the very-high resolution siation,
while a modest increase is seen in the simulation run at medasolution. During this
time the code shows a convergence which is between thirer¢rigiht after the merger)
and fourth-order (during the ringdown).

In addition to convergence in the Einstein tensor, we al$idate the correctness of
the physically relevant information contained in the wawafs. We do this by computing
convergence rate of the wavefor@s,, Q4;, and@.; using the ratio of the integrated
differences between the medium and high resolutions, andith and very-high resolu-
tions

B \/LZQ |Qo.024 — Qo.018]>du

= : (4.20)
\/f:f |Qo.018 — Qo.012/*du
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Figure 4.2: The L, norm of the Einstein tensor E¢l.(L9 as a function of time. During
the periods of strong dynamidsg, when the time derivatives of the evolu-
tion variables are large) the convergence order is dondrtatehe accuracy
of the time-interpolation algorithm used at mesh refinentemindaries,
thus yielding third-order accuracy. At the times when these-derivatives
are small, the fourth-order finite-differencing algorithtmcomes the domi-
nant source of the error. Note that the very large violat{oh€)(300) at the
medium resolution) are confined tasaglegrid point on the trailing edge
of the apparent horizon and are produced by the very steelegta in the
shift. As discussed later, this does not affect the fourtheoconvergence
of the waveforms. At the time of the merger a common apparenzon
forms and its excision from the calculation of the, norm is responsible
for the drop in the violation.

whereu = t — r, is the retarded time at a given detect@r,stands for eitheQ,,
Q3 or Q5 and refers to either its amplitude or the phase. As indicat&t). (4.20, the
integrals are evaluated over the retarded intdrvalu,] which does not include the initial
spurious burst of radiation (which we do not expect to cagwbut contains otherwise
the complete waveform including the ringdown.

Assuming a truncation errd@?(h?) and that the coefficient of this error does not de-
pend on resolution, the functignbecomes to leading order

. (ho.024)" = (ho.018)" (4.21)

(ho.018)P — (ho.012)P’

wherehg 024 = 0.024 M and | underline the importance of having used a full doubtihg
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the resolution between the smallest and largest resoltdgignprove the accuracy of this
estimate over more narrowly spaced resolution steps. ktipea we measurg and then
solve for the'effective” convergence orderusing Eq. 4.21). A discussion of the details
in this procedure are presented in Apperdlid alongside with the computed convergence
rates for the amplitudes and phasegjof/hich are found to between twé & 3) and four

(¢ = 2) (cf., TableA.1).

The above definition of convergence rate results in norgertealues for the expo-
nentp, even though our methods are explicitly polynomial. Thisgsause the derivation
of (4.21) assumes a coefficient of one in the leading order error teatnextrapolates be-
tween resolutions. If the coefficient is in practice differéor a given set of resolutions,
then a non-integer value is larger if the coefficient is saralAs such, values obtained
in this way should not be considered literal polynomial agblation orders. By “con-
vergence order 3.8” we rather mean that our results arestensiwith third-order finite
differencing where the leading third-order error coefiities quite small so that at the
given resolutions the convergence appears to be closerdortnforder approximation.
Very high convergence exponents are a likely indication tiie lowest resolution is not
in the convergent regime for the measured quantity. Noggirt convergence orders ob-
tained in this way are resolution dependent, and shouldsbems converge to the lowest
order finite difference approximation used in the code inlithé of infinite resolution.

An important property of the waveforms which has emergednygerforming these
convergence tests is that the dominant source of error isgnasing which causes the
lower resolution evolutions to “lag” behind the higher resion. This delay is usually
rather small and betwedn1 M and0.5 M, but it is visible when comparing the total
amplitude of@ as a function of time. The most important consequence otthds is that
it can spoil the convergence tests if not properly taken @amcount: the residuals errors
seem, in fact, to indicate over-convergence. This is shovthé upper panel of Figl.3
which reports the differences betwe@§, when computed at different resolutions scaled
for fourth-order convergence. The overlap is rather poar ewen indicating that the
truncation error is smaller than expected. This is an attifd the near cancellation of
the lowest-order terms in the truncation error and indugethb small time-differences
at different resolutions.

We remove this effect by shifting the time coordinate of thedimm and high res-
olution runs by the time interval needed to produce an algmnof the maxima of the
emitted radiation. Details on how to do this are discusséetpipendixA.4, and we report
in the lower panel of Figd.3the same data shown in the upper panel, but after the time-
shifting. Clearly, the overlap is now extremely good sugiggsthat the time-shifting is
essential for obtaining the expected fourth-order coremeg in the waveforms. In accord
with the convergence in the waveforms we also see fourthr @alevergence in the final
kick value, and spins.

As a final note we remark that besides validating a properargence of the code, it
is also important to assess the accuracy of any measurabititgyuat the relevant reso-
lutions considered here. As a representative and phygicahningful quantity we have



Table 4.2: Binary sequences for which numerical simulations have kbaemed out, with different columns referring to the punetinitial location
+x/M, the linear momente:p/M, the mass parameters; /M, the dimensionless spinsg, the normalized ADM mas3/, ,, =
M,,.,/M measured at infinity, and the normalized ADM angular momenty, ., = J,.,,/M?>. Finally, the last six columns contain

the numerical and fitted values fpsqk| (in km/s), as, and the corresponding errors.

tx/M  +p/M my/M mo/M o« as Mo Jaou 08| e k) ag, at err. (%)
r0 | 3.0205 0.1366 0.4011 0.4009 -0.584 0.584 0.9856 0.82861.75 258.09 140 0.6891 0.6883 0.12
rl | 3.1264 0.1319 0.4380 0.4016 -0.438 0.584 0.9855 0.86221.38 219.04 1.06 0.7109 0.7105 0.06
r2 | 3.2198 0.1281 0.4615 0.4022 -0.292 0.584 0.9856 0.89886.18 181.93 228 0.7314 0.7322 0.11
r3 | 3.3190 0.1243 0.4749 0.4028 -0.146 0.584 0.9857 0.93%44.02 146.75 1.90 0.7516 0.7536  0.2]
r4 | 3.4100 0.1210 0.4796 0.4034 0.000 0.584 0.9859 0.97106.11 113.52 6.98 0.7740 0.7747 0.08
r5 | 3.5063 0.1176 0.4761 0.4040 0.146 0.584 0.9862 1.00/B1.42 8223 1.00 0.7948 0.7953 0.06
r6 | 3.5988 0.1146 0.4638 0.4044 0.292 0.584 0.9864 1.04445.90 52.88 15.21 0.8150 0.8156  0.0Y
r7 | 3.6841 0.1120 0.4412 0.4048 0.438 0.584 0.9867 1.08120.59 25.47 23.70 0.8364 0.8355 0.11

r8 | 3.7705 0.1094 0.4052 0.4052 0.584 0.584 0.9872 1.117 0.00 0.00 0.00 0.8550 0.855 0.00

ra0 | 2.9654 0.1391 0.4585 0.4584 -0.300 0.300 0.9845 0.8§28581.34 13258 0.95 0.6894 0.6883 0.1
ral | 3.0046 0.1373 0.4645 0.4587 -0.250 0.300 0.9846 0.83r88.10 120.28 1.85 0.6971 0.6959 0.1
ra2 | 3.0438 0.1355 0.4692 0.4591 -0.200 0.300 0.9847 0.84906.33 108.21 1.77 0.7047 0.7035 0.1
ra3 | 3.0816 0.1339 0.4730 0.4594 -0.150 0.300 0.9848 0.8624.98 96.36 1.46 0.7120 0.7111  0.13
ra4 | 3.1215 0.1321 0.4757 0.4597 -0.100 0.300 0.9849 0.87494.74 84.75 0.01 0.7192 0.7185  0.0¢
ra6 | 3.1988 0.1290 0.4782 0.4602 0.000 0.300 0.9850 0.90083.43 62.19 195 0.7331 0.7334  0.04
ra8 | 3.2705 0.1261 0.4768 0.4608 0.100 0.300 0.9852 0.92481.29 4055 1.79 0.7471 0.7481  0.13

OO

s0 | 2.9447 0.1401 0.4761 0.4761 0.000 0.000 0.9844 0.82510.00 0.00 0.00 0.6892 0.6883  0.13
s1 | 3.1106 0.1326 0.4756 0.4756 0.100 0.100 0.9848 0.8§749.00 0.00 0.00 0.7192 0.7185  0.09
s2 | 3.2718 0.1261 0.4709 0.4709 0.200 0.200 0.9851 0.92510.00 0.00 0.00 0.7471 0.7481 0.13
s3 | 3.4098 0.1210 0.4617 0.4617 0.300 0.300 0.9855 0.97510.00 0.00 0.00 0.7772 0.7769  0.03
s4 | 3.5521 0.1161 0.4476 0.4476 0.400 0.400 0.9859 1.025@®.00 0.00 0.00 0.8077 0.8051 0.33
sb | 3.6721 0.1123 0.4276 0.4276 0.500 0.500 0.9865 1.0748.00 0.00 0.00 0.8340 0.8325 0.18
s6 | 3.7896 0.1088 0.4002 0.4002 0.600 0.600 0.9874 1.1246.00 0.00 0.00 0.8583 0.8592 0.11

t1 4.0812 0.1103 0.4062 0.4426 -0.584 0.438 0.9884 0.86388.37 232.62 2.41 0.6640 0.6658 0.2
t2 | 3.9767 0.1131 0.4057 0.4652 -0.584 0.292 0.9881 0.82830.25 205.21 2.48 0.6400 0.6429 04
t3 | 3.8632 0.1165 0.4053 0.4775 -0.584 0.146 0.9879 0.790K4.58 175.86 0.73 0.6180 0.6196 0.2
t4 | 3.7387 0.1204 0.4047 0.4810 -0.584 0.000 0.9878 0.75882.62 144.57 1.37 0.5965 0.5959 0.0
t5 | 3.6102 0.1246 0.4041 0.4761 -0.584 -0.146 0.9876 0.717@26.36 111.34 4.68 0.5738 0.5719 0.3
6 | 3.4765 0.1294 0.4033 0.4625 -0.584 -0.292 0.9874 0.68071..35 76.17 6.75 0.5493 0.5475 0.3%
t7 | 3.3391 0.1348 0.4025 0.4387 -0.584 -0.438 0.9873 0.64435.36 39.05 10.45 0.5233 0.5227 0.1
t8 | 3.1712 0.1419 0.4015 0.4015 -0.584 -0.584 0.9875 0.608M®.00 0.00 0.00 0.4955 0.4976 0.42

=iy O 0O Or

ul | 2.9500 0.1398 0.4683 0.4685 -0.200 0.200 0.9845 0.82487.34 88.39 1.20 0.6893 0.6883 0.15
u2 | 2.9800 0.1384 0.4436 0.4438 -0.400 0.400 0.9846 0.82#85.39 176.78 0.79 0.6895 0.6883 0.1
u3 | 3.0500 0.1355 0.3951 0.3953 -0.600 0.600 0.9847 0.82B66.39 265.16 0.46 0.6884 0.6883 0.0
ud | 3.1500 0.1310 0.2968 0.2970 -0.800 0.800 0.9850 0.828536.87 353.55 0.93 0.6884 0.6883 0.0

N
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Figure 4.3: Convergence of the fiducial wavefor@, for the binary system0 before
and after the time-shift defined in Eq#.88)—(A.40). In the upper graph
we show the difference betweén;, when computed at different resolu-
tions, scaled for fourth-order convergence and using raw @a., without
time-shifting). The overlap between the curves is rathergadicating an
over-convergence.¢., the truncation error appears to be smaller than ex-
pected). In the lower panel we show the same data but afterghmfting.
The very good overlap of the scaled curves on the indicatashie time-
shifting is essential for obtaining properly scaling difaces between runs
of various resolutions.

considered the accuracy of the fiducial wavefags, for the binary system0. This is
shown in Fig.4.4, where in the upper graph we report the waveforms at the tiffes-
ent resolutions: very-high (continuous line), high (dakhee) and medium (dotted line).
Already with the lowest of these resolutions the accuragufficiently high so that the
curves are essentially indistinguishable from each otlyezyle. The lower panels show
magnifications of the relevant portions of the waveformhutiite lower-left panel concen-
trating on the initial transient radiation produced by thutation error. The latter clearly
is rather large at the medium resolution, but it convergeayasmoothly when the grid
spacing is decreased. The lower-right panel, on the othmet, liafers to the quasi-normal
ringing and shows that it is well-captured at all resolusion
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Figure 4.4: Accuracy of the fiducial waveforngy, for the binary system0. In the
upper graph we show the waveforms at the three differenlusns: very-
high (continuous line), high (dashed line), medium (dotieel). The accu-
racy is very good already with the lowest resolution and thees cannot
be distinguished. The lower panels show magnifications ofescelevant
portions of the waveform, with the lower-left panel coneatibg on the
initial transient radiation produced by the truncatioroeriThe lower-right
panel, on the other hand, refers to the quasi-normal ringimthshows that
it is well-captured at all resolutions.

4.2 Kicks

Together with energy and angular momentum, gravitatioadiation also carries away
linear momentum. In the case of a binary system of non-spinhiack holes, a physical
intuition of this loss of linear momentum can be built ratleasily. As the two bodies
orbit around the common center of mass, each will emit reiatvhich is longitudinally-
beamed. Unless the two black holes have exactly the same thagsmotion will be
different, with the smaller black hole moving more rapidlydahence, being more effi-
cient in beaming its emission. The net momentum gained averhit is negligible if
the orbit is almost circular (the momentum loss in any dicecis essentially balanced
by an equal loss in the diametrically opposite directionjt, ibcan become large when
integrated over many orbits, leading to a recoil that is atfva (< 10~2) of the speed of
light during the last portion of the orbit prior to the merger

A number of PN/perturbative analyses (ses.,[148, 168]) have provided estimates
of this recoil velocity, while numerical-relativity simations [136, 139] have recently
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measured it to rather high precision, predicting a maximek lof 175 km/s for a bi-
nary system of nonspinning black holes with a mass watio M, /M, ~ 0.36, whereM;
and M- are the masses of the two black holes. Such a recoil has ingletdimportant
astrophysical consequences, since it could, providedatdge enough, kick the binary out
of its host environment. Clearly, a replaced or an even mgsséentral black hole would
have dramatic consequences for the further developmehtdidst. Determining accu-
rately what are the expected escape velocities for the mpistal environments hosting
a binary black hole system is rather difficult, but the estemanade in refs. [169, 170],
for instance, predict that the escape velocities for dwaldixjes and globular clusters are
< 100 km/s, but for giant galaxies these can+d 000 km/s.

When adopting a purely geometrical viewpoint, it is obvidhat a kick velocity
should be expected in any binary system which is not peyfegtinmetric. A difference
in the masses is a simple way of producing such an asymmetrgubpely not the only
one. Indeed, even an equal-mass system can be made asymifita&itwo black holes
have unequal spins [171]. Also in this case, a simple phisitidtion can be constructed.
Consider, for simplicity an equal-mass binary in which omhe member is spinning par-
allel to the orbital angular momentum. As a result of the gp@duced frame dragging, the
speed of the nonspinning body will be increased and its tiadidurther beamed. Using
PN theory at the 2.5 order, Kidder [172] has treated this-spiit interaction concluding
that in the case of a circular, non-precessing orbit, thal tatk for a binary system of
arbitrary mass and spin ratio can be expressed as [148]

¢*(1—q) . a2q*(1 — qay /as)
I+qF "7 (Q+qF 7

[V|kick = €1 (4.22)

wherea; 2 = 5172/M1272 are the dimensionless spins of the two black holes and thiese a
aligned with the total orbital angular momentuing,, S| > = al,ngQez for an orbital
motion in the(x,y) plane. Hereg; andcs are factors depending on the total mass of
the system and on the orbital separation at which the sysi@ps sadiating. This radius
is difficult to determine precisely as it lies in a region wdn¢he PN approximation is
not very accurate and is, in practice, not even a constantdthier, depends on both the
mass and the spin ratio. Assuming for simpliaity~ ¢, expression4.41) reveals that a
substantial contribution to the recoil velocity comes frtira spins alone. In addition, for
any giveng, it predicts a linear growth of the recoil velocity with imasing difference in
spins, yielding a kick which is comparable with the one cayrfiom the asymmetry in
the mass. Stated differently, when it comes to recoil véksithe spin contributions may
be the dominant ones.

Apart from finding the maximal possible value for the recailocity it has been tried
to develop a semi-analytic description fitting the datalatée so far [173,174]. In this
section | want to draw the attention to the techniques obekitng the waves and thus the
recoil velocity. Itis, for example, not clear how sensitibe methods used are to gauge
effects such as the motion of the black hole on the grid. QDuitie time it takes to extract
the information, the system will have moved significantlyemhts speed is- 1% of the
speed of light.
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4.2.1 Kick measurements vial,

In radiating spacetimes where the radiation is emitted asgtrically, there will be a net
linear momentum imparted to the system. In particular, ndhase of a binary black hole
merger, the final black hole receives a “kick” which causés ihove off at a given veloc-
ity. This velocity can be determined by an analysis of thetiairadiation. In ADM-type
numerical simulations, this is typically done by evalugtsome scalar quantity which can
be associated with the wave energy at some large radiuswtiithicomputational domain.
The chosen radius needs to be large enough that it is in thee"a@ne”, where non-linear
self-interaction of the gravitational field is negligiblachthe waves can be picked out as
perturbations of a background.

Two methods have become commonplace to determine the démistee energy. The
first uses the Newman-Penrose curvature séglawhich can be identified with the grav-
itational radiation if a suitable frame is chosen at the aotton radius. An alternative
method measures the metric of the numerically generatezmtspee against a fixed back-
ground at the extraction radius, and determines the Zatibincrief perturbation modes.
Both methods yield data for the gravitational wave energictvican be integrated to de-
termine a net linear momentum. Both of these methods areideddn detail in Section
[2.6.3.

The Newman-Penrose formalism provides a convenient reptatson for a number
of radiation related quantities as spin-weighted scalargarticular, the curvature com-
ponent

Uy, =— am(gnamﬂn“’mé, (4.23)

is defined as a particular component of the Weyl curvatlirg, s, projected onto a given
null frame,{l,n, m,m}. In practice, we define an orthonormal basis in the threeespac
(ff,é,(fb), centered on the Cartesian grid center and oriented witespalongz. The
normal to the slice defines a time-like vectofrom which we construct the null frame

1 1 .

. 1 .~ .
l=—(t—-7), =—(t+7), m=—(0—-1i9¢). 4.24
\/5( ) \/5( ) \/5( P) (4.24)
We then calculatel, via a reformulation of 4.23 in terms of ADM variables on the
slice [175], o

Uy = C’ijmlmj, (4.25)

where
Cij = Rij — KK;j + Ki"Ky,; — ie,"'VKjp.. (4.26)

The identification of the Newman-Penrogg with the gravitational radiation content
of the spacetime is a result of the peeling theorem, whictestéhat in an appropriate
frame the¥, component of the curvature has the slowest falloff withuadD(1/r). The
conditions of this theorem are not satisfied exactly at a lsradlus and in the chosen
frame. While there are proposals for how this situation carnfproved [176], we find
that beyond-, > 30 M in fact our measure o¥', scales extremely well with the dif-
ferent extraction radir,, suggesting that the peeling property is satisfied to a nedsde
approximation (see Figt.5).
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Figure 4.5: Amplitude ofr, __, | 4| for extraction spheres at, = 30 M, 40 M, 50 M
and60 M, demonstrating tha’, does indeed fall off as required by the
peeling property. There is a slight decrease in amplitudle \arger radius,
suggesting that dissipative effects may become importafgrger radii.
Results in this paper use waveforms from the= 50 M extraction sphere,
unless indicated otherwise.

The gravitational wave polarization amplitudes andh . are related tav, by [77]
hy —ihy =Wy, (4.27)

where the double over-dot stands for second-order timevatere. The flux of linear
momentum emitted in gravitational waves in thdirection can be computed from the
Isaacson’s energy-momentum tensor and can be writtenrimstef the two polarization
amplitudes as [148]

7“2

Fi=P=1— [don (hi+hi> , (4.28)
wheren; = z;/r is the unit radial vector that points from the source to thgeober and
dQ) = sin Ad¢dd is the line element of our extraction 2-sphe&fe Using Eq. 4.27), this
leads to an expression for the momentum flux in term® pfs it is commonly used in
recent numerical relativity calculations [136, 139, 15%/,1159, 160, 177]:

2 t 2
Fi= lim { lsch / dQ n; / dtw,| b (4.29)
T'sch — 00 167T —c0
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The Schwarzschild radius,,, is derived from the coordinate (isotropic) radius via the

standard formula
M 2
Tsch = Tiso | 1 — 5 . (4.30)
Tiso

assuming a constant ADM mas$ = M, ., throughout the simulation. With this choice
of radial coordinate, expressioA.29 has been shown to provide recoil velocities which
are in better agreement with those obtained through gawgeiant perturbations than
with the alternative coordinate radiusf.(Sect.4.2.2 and reported in the literature (Ad-
ditional details on the numerical measuremeni¥gfare presented in Append.5.)

4.2.2 Kick measurements via gauge-invariant perturbatios

An independent method to compute the linear momentum daariey by gravitational
radiation is based on the measurements of the non-sphgauagk-invariant perturbations
of a Schwarzschild black hole (see Refs. [178-180] for apfitins to Cartesian coordi-
nates grids). In practice, a set of “observers” is placed-splres of fixed coordinate
radiusr,,, where they extract the gauge-invariant, odd-paritya¢oal) current multipoles
Q,,, and even-parity (opolar) mass multipole@jm of the metric perturbation [76].
The numerical implementations of the gauge-invariantaldeis is done by following the
multi-polar analysis outlined by Abrahams and Price [181je Qjm andQ, . variables
are related t . andh as [182]

. 1 9] )4
hi —ihe === ) (Q?m

(=2 m=—/

—i /_ t Q;m(t’)dt’> oy (4.31)

Here_,Y ‘™ are thes = —2 spin-weighted spherical harmonics giidm) are the indices
of the angular decomposition. Validations of this approacBD vacuum spacetimes can
be found in Refs. [114,180, 183], while its use with mattarrses has first been reported
in [184].

We note that the notation introduced in E4.31) could be misleading as it seems to
suggest thak . is always of odd-parity and , is always of even-parity. In the absence
of axisymmetry,.e., whenm # 0, bothh, andh. are a superposition of odd and even
parity modes. It is only for axisymmetric systems, for whimhly = 0 modes are
present, tha®),, and Qjm arereal numbers, thab, is only even-parity andh . is only
odd-parity. Despite this possible confusion, we here priefemaintain the notation of
Eq. @.31) which is the most common in the literature [182].

The flux of linear momentum emitted in gravitational waveteims ofQ; andQ;’
can be computed by inserting E4.31) in Eq. @.28, then decomposing; in spherical
harmonics and performing the angular integral. This prapedoes along the lines dis-
cussed by Thorne in Ref. [185], where all the relevant foeawdre already present, and
which we here simply rewrite adopting the gauge-invariardrities.
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In Ref. [185] the even-parity (oglectrid multipoles are indicated witld,,, and the
odd-parity (ormagneti¢ ones withSy,,,. They are related to our notation by

Iém ng ) (432)
D S = Qp (4.33)

where® f,,,, = d’ fy,/dt’. From the well known propertyQ,>*)* = (=1)"Q, " ,
where the asterisk indicates complex conjugation, oneaarite Eq. (4.20) of Ref. [185]
in a more compact form. Following Ref. [168] where the lowmsiti-polar contribution
was explicitly computed in this way, it is convenient to cangthe components of the
linear momentum flux in the equatorial plane in a complex nends?, + iF,. The
multi-polar expansion of the flux vector can be written as

oo /L
FotiFy=3 3 bn (Fm+iF") (4.34)
=2 m=0
oo !
Fo=>> omFm, (4.35)
=2 m=0

whered,, = 1if m # 0 andé,,, = 1/2 if m = 0. Each multipole reads

m m — (_1)m 7 ) e
‘7:6 + ‘7:6 m -2 azerzr—mQ;m—l + Clngzer;_(m-H)

CUl—D+3)]_ /.- ) S
BT (01 0500+ 01 000

+ me (Qz_sz—Jrl —(m+1) + QZmQ;Jrl 7(m+1)> ] } 7 (436)
T o Vi : x Ce—1)(+3)
Ty {2m tm [QZ *mQ@m] * C"m\/(% +1)(20+3)
Re [Qz_—sz’_—l—lm + Q?—mQ?—l—l m] } ’ (437)
and
a}m =/{lEtm)({Fm+1), (4.38)
b =Vl Em+1)(lEtm+2), (4.39)
com =\l —m+1)l —m+1). (4.40)

Note that here bottF!™ andfgfm arereal numbers and are obtained as the real and imag-
inary part of the right-hand-side of Eqt.86). For a general system without symmetries
one is expectingc“™ to be nonzero. However, our initial data set-up, an insigigabi-
nary with spins anti-aligned and parallel to the orbital @dag momentum, implies that
the linear momentum flux vector is completely contained i ¢lquatorial plane of the
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system and so thaf’™ = 0 by construction. Since | am imposing equatorial symmetry
(i.e., invariance ford — w — 6) we have that multipoles with + m = even are purely
even-parity ie., Q}m # 0 andQ,,, = 0) and those with + m = odd are purely
odd-parity {.e, Q) = 0andQ,  # 0).

We have validated both methods by measuring the recoil iglfur a binary system
of nonspinning black holes having a mass rati®o$ at an initial separation of.1 M.
The results of this calibration extractedrat 50 M are shown in Fig4.6, which reports
the evolution of the kick velocity using4 (solid lines), and the gauge-invariant quantities
when the summation iM(36) is truncated to the firgst multipoles (dashed lines), which
we have found to be sufficient to show convergence. Indicatitidl symbols are the
estimates and relative error bars obtained by [136] (dilhel by [139] (star).

We note that because the binary system starts evolving aite $ieparation, it will
have already gained a net linear momentum that can influéeceaiue of the final kick.
Computing this initial linear momentum amounts to selegtrproper constant in the inte-
gration of @.29 or (4.36. Fortunately, this is rather straightforward to do and anis to
determining the direction in 3-space in which the center aésnof the system is moving
initially. In practice, we plot the evolution of theandy-components of the kick velocity
(the z-component is zero because of symmetry) and calculate ttervi® the center of
the spiral generated as the evolution proceeds. This visdtoen composed with the final
one, yielding the final kick; note that being a vector thiggration constant is not simply
an additive constant for the kick velocity|ii. In Fig. 4.6, we have plotted the effect of
including this constant, comparing the case where it isse¢ito [set of curve&)], with
a value set by extrapolating the recoil backwards to comagerfer the small but nonzero
initial linear momentum [set of curveb)]. In the first case we find agreement with [139],
while in the second case the good agreement is with [136].

A validation of this procedure is also rather straightfomvaonly an accurate estimate
of the initial momentum yields a monotonic evolution of thekkvelocity (or, in the case
of very close binaries, reduces the oscillations conshidgraany different choice would
yield the oscillations seen in curvéas) (cf., Fig. 1 of ref. [136] or Fig. 3 of ref. [139]).
Selecting the correct integration constant becomes lgssriamt as the separation of the
binary is increased (see also the discussion below), bahieasily lead to errors aH%
or more for the rather close binaries considered here.

4.2.3 Results

This section collects the results of our analysis of theifeebocity of spin-aligned bina-
ries and discusses the different aspects of the study whbittbined provide a consistent
and accurate picture of this process. We will first concéatom the systematic error in-
troduced by the use of initial data with zero linear momenamnd on the techniques we
have developed to remove it. We will then discuss the actordpuitation of the recoil
velocities and their dependence on the spin ratio, higtiighthe modes of the radiation
which are largely responsible for the asymmetric emissieinally, we will discuss the
accuracy of our measurements and our ability to preserve aras$ angular momentum
to below1%.
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Figure 4.6: Recoil velocity as function of time for a binary system of spimning black
holes with a mass ratio df/3 at an initial separatiod.1 M. The set of
curves(a) and (b) differ in the choice of the integration constant, while
the solid and dashed lines show the two independent conignsatf the
momentum flux [eqs4.29 and &.36)].
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Figure 4.7: Recoil velocity as function of time for the sequence of rues from 0
with —a; = as = 0.586, to r4 witha; = 0,a2 = 0.586). Note that the
merger is delayed for smaller values|of|.
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Figure 4.8: The recoil velocity of the binary0 is compared to those of the same system
but with either a larger or a smaller initial separatio®.( 70/ andr0s,
respectively). Note the same recoil velocity is obtaineémthe integration
constant is properly taken into account, while an error egelas~ 13% is
made otherwise.

A number of interesting features are worth remarking. Kirsll of the curves show
a monotonic growth as a result of a suitable choice for thegirttion constant. Secondly,
the two types of measurements agree to very good precisioindlyf, binaries that have
a spin ratio closer to zero merge progressively later. Ipjgaaent that the growth rate of
the kick velocity (and hence the rapidity of the inspiraf)¢rieases with the asymmetry
in the spins. Fourthly, increasing the initial separationd binary witha;/as = —1
does not change significantly the integration constantadaer 0, thus indicating that
the kick estimate for the latter is robust. Finally, as inqurd-mass binaries, the largest
contribution to the kick comes from the final parts of the irepand is dominated by
the last orbit. However, unlike equal-mass binaries, thet-pwerger evolution of the kick
velocity is not modified substantially by the quasi-normadda ringing ¢f., Figs. 4.7
and4.6), with the final kick velocity being only slightly smalleradh the maximum one
reached during the evolution.

As predicted by the PN expressiof.4]), the final velocities shown in Figl.7 ex-
hibit a linear dependence with the spin ratio, and this isvshim Fig. 4.9, which reports
the asymptotic kick velocities when measured with (open circles) or with the gauge-
invariant perturbations (stars). Also indicated are tmerdyars which include errors from
the determination of the integration constants, from thgeddence of the waveforms on
the extraction radii, and from the truncation error.
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Figure 4.9: Kick velocities and error bars for different spin ratiose thashed lines show
a linear fit of all the data when the pointat/a; = 1 is given an infinite
weight sincgv|yicx = 0 for a1 = as.

The data points in Figd.9are not the only ones available and indeed a binary system
with a,/a; = 1 is bound to produce a zero kick velocity. The dashed linesign 49
represent a linear fit of all the data when the point;au; = 1 is given an infinite weight
to account forjv|xc = 0 whena; = ay (short-dashed line fow, and long-dashed for

szif)). These lines are only illustrative and bear a physicali@@mce only if the linear
dependence should hold for all the possible values of thersgio.

4.2.4 Initial transients in the waveforms

Both Egs. 4.29 and @.36) provide an expression of the recoil velocity in terms of the
radiated (linear) momentum per (infinitesimal) time int&#nA time-integration of those
equations is needed in order to compute the recoil and thi®osly opens the question
of determining an integration constant which is in practceector. Fortunately, this
integration constant has here a clear physical meaning &therefore easy to compute.
In essence it reflects the fact that at the time the simulatiGtarted, the binary system
has already accumulated a non-vanishing net momentum a&sila o&the slow inspiral
from an infinite separation.

Since the initial data is constructed so as to have a vamjdimear momentum, there
will be a inconsistency between this assumption and theahetolution of the initial
data. Stated differently, the numerical evolution of thadiin equations will soon tend
to a spacetime which is different from the initial one andethtorresponds to one with a
net linear momentum. This momentum is the one that the binasygained when inspi-
ralling from¢ = —oo till ¢ = 0. Calculating the integration constant amounts therefore t
computing the vector accounting for this mismatch and ism#s for a correct measure-
ment of the recoil velocity. The error made when neglecthig tonstant, as routinely
done in numerical-relativity calculations, inevitablyopuces a systematic deviation from
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the correct answer and, as we will show in the next sectiamgritaltogether prevent from
having the correct qualitative behavior.

The relevance of this integration constant depends on thiel iseparation and it is
more important for binaries that start their evolutioniadly quite close. The tighter the
binary is, the larger the emitted momentum per unit time dredrhore important it is
to evaluate the initial mismatch. Fig.8 helps to illustrate this point. The figure shows

the time evolution of the recoil velocity|;a. = /v2 + v2 for the same binary system

having spin ratiaz; /as = —1 but with increasing initial separation. More precisely, we
consider systema)/, 0 andr0s which differ only in the initial separation, which is about
8.4, 6.0 and5.6 M, respectively. The data Fig.8is properly shifted in time so as to have
the curves overlap and shows tloatly when the integration constant is properly taken
into account, do the three simulations yield the same re@bdcity (cf., solid, dashed,
and dotted lines). On the other hand, when the integratiostaat is not included in the
calculation, different evolutions will yield different &mates, with a systematic error that
can be as large ds% (cf., long-dashed and dot-dashed lines) and is clearly unaataiept
given that the overall precision of the simulations is beld (cf., Figs.4.154.16 and
the discussion in Sect.2.7).

Besides providing the right answer, the calculation of ttegration constant also
results in a considerable saving in computational coste ddmplete dynamics of the
binary 0l including the merger and ringdown, in fact, requires siriofes for about
600 M ; the same answer in terms of recoil velocity can be obtaindu tive system-0s,
whose dynamics is fully accounted for with a simulationitagonly for340 M.

To compute the integration constant it is sufficient to loakegully at the evolution in
the velocity-space of the two componentsandv, of the recoil velocity (because of the
symmetry thez-component is zero but the method described here can by eashded
to the case in whick* # 0). This is shown in the left panel of Fig.10 which reports
the track of the “center of mass” for syster in such a space. Different types of line
refer to different intervals in time during the evolutiondafor an observer at, = 50 M,
the dotted one refers t0o< 50 M, the dashed one 80 M < ¢t < 75 M, the continuous
one to75 M <t < 183 M, and finally the long-dashed onettg> 183 M.

Fort < 50 M the system undergoes very little evolution in velocity-ap&f., dotted
line in the inset within the inset of the left panel) but a thphange, lasting for about
25 M, takes place as the radiation reaches the observer. Tlaioadieceived has in-
formation about the “correct” linear momentum of the spacetwhich is a solution of
the Einstein equations for systert as if it had inspiraled from infinity, and thus rapidly
moves the center of mass to a net nonzero recoil velocityalmost-straight dashed line
in the inset in the left panel). Once the system has adjustetthé proper linear momen-
tum, the evolution proceeds as expected, with the recailcitgl vector slowly tracking a
spiral in velocity space. This is an important point whichpvefer to underline: the rate
of change of linear momentum is very large only initially ahi is because as the binary
migrates from the initial non-radiating state (the dataoisformally flat) to the consistent
radiating state, it will emit the amount of linear momenturwvould have emitted when
inspiralling from infinite separation. After this burst @fié¢ar momentum, the evolution
of the recoil velocity is minute, essentially until it growsry rapidly during the last orbit.
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Figure 4.10: Left panel:Evolution in velocity space of the recoil-velocity vectdery

little variation is recorded before the radiation reachesabserver at, =
50 M (dotted lines in the two insets). The absence of the propeati
momentum in the initial data triggers a rapid and an almasigtt-line
motion (dashed line) of the center of the spiral away fromdtigin of
coordinates during the initial stages of the evolution.eAthis transient
motion, the evolution is slower, with the spiral progressiopening up
(solid line). The vector to the center of the spiral correxgmoto the initial
linear momentum of the spacetime and is used as integratiost@nt for
Eqgs. @.29 and @.36). The final part of the evolution is characterized by a
change in the spiral pattern (long-dashed line) as a rektiieanteraction
of different modes in the ringdown of the final black hole. &lthat the
figure has been rotated clockwise of abduft to allow for the two insets.
Right panel: Initial behavior of the recoil velocity (upper graph) and of
the waveform Q1,) for model~0 (lower graph). This figure should be
compared with the initial vector evolution of the recoil @eity shown in
the left panel where the same types of lines have been usttfdifferent
stages of the evolution.
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Figure 4.11: Left panel: The same as in the left panel of Figt10but for systemr7.

Shown in the inset is the sudden re-orientation of the reebdcity vector
during ringdown and corresponding to a new spiral with défe aperture
(long-dashed line). Although more pronounced-ii the appearance of
this “hook” at ringdown is seen all the members of the segeefight
panel: The same as in the left panel of Fig10but for system-7. The
upper graph concentrates on the final stages of the evoiutafrihe recoil
velocity and on the appearance of a second peak during nmg@ong-
dashed curve). The lower graph shows the same but in ternie 6f %,
waveform. A discussion of these final stages of the evoluanade in
Sect4.2.6
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Computing the integration constant consists then in calig the position of the
center of the spiral and this can be done either by a simpfeat®n of a graph in the
velocity-space, from which one computes the center of thalspr, equivalently, by
searching for the initial vector that would lead to an edaimtmonotonidn time growth
of the recoil velocity. The latter procedure does not rezmjaithuman judgment it yields
the same answer (to less thakim/s) as the one guessed by looking at the velocity space.

The right panel of Fig4.10 shows the same evolution as the left one, but through
different quantities. The upper panel, in particular, shohe time evolution of the recaoll
velocity and the rapid changes it undergoes initially whenradiation first invests the ob-
server. The lower panel, on the other hand, showsfigamplitude and highlights that,
while the initial burst of radiation stops after~ 50 M (cf., dotted line), the waveform is
still not fully consistent untik ~ 75 M (cf., dashed line).

It is worth remarking that the evolution of the recoil veciothe velocity-space has
another interesting feature during the final stages of thkigen and when the final black
hole is ringing down. This is marked as a long-dashed linaéréft panel of of Fig4.10
and shows a break in the building of the spiral and the appearaf a new spiral with a
different aperture (we refer to this feature as “the hoolhis is more evident in the left
panel of Fig4.11, which shows the evolution of the recoil vector for the bynsysten-7
and offers a magnification of the hook in the inset. The hoaoants for a rapid change
in the recoil velocity and it is due to the interplay of diféet modes during the ringdown.
This is clearly illustrated in the right panel of Fig.11which similarly reports the time
evolution of the recoil velocity and the final stages of @g waveform.

4.2.5 Recoil velocities

The recoil velocity has been calculated for the sequenceanfets listed in Tablet.1

As mentioned in Sec#.1.], this sequence corresponds to equal-mass black holesewhos
initial spins are unequal, though always aligned with tkexis. Ther0 model has equal

but opposite spins, while the&d model has equal and aligned spins on the black holes, with
other models corresponding to intermediate values, amedtin Sectiort.1.1 Since the
total initial orbital angular momenturl of the system is chosen to be constant over the
sequence, the initial separations of the black holes isee@ the sequence, as well as
the time to merger due to spin-spin effects which contritboiten orbital “hang-up” in the
aligned case.

| extract gravitational waves by both the gauge-invariamd ¢he ¥, methods de-
scribed in the previous section and by interpolating théatamh-related quantities onto
2-spheres at coordinate radji = 30 M, 40 M, 50 M, and60 M. The use of multiple
extraction radii is made to check the consistency of the nreasent and the precise value
of the extraction radius has little influence on the actuek ldalculation. In the case of
the binary system0 we have verified that the recoil velocity yields the same @alith
differences that are smaller thamkm /s for extraction 2-spheres at distances larger than
30 M. As aresult, we have used = 50 M as the fiducial distance for an observer in
the wave-zone and all of the results presented hereaftéb&inade at this extraction
2-sphere. A validation that the gauge-invariant quarstitiave the proper scaling with
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Figure 4.12: Left panel:Recoil velocity as a function of the spin asymmetry paramete
a1 /a9 for the models listed in Tabk.1 Indicated with a continuous lines
are the results obtained vig,, while a dashed line is used for the gauge-
invariant quantities); . Right panel: Final recoil velocity calculated
with both the usel, (empty circles) and the gauge-invariant quantities
(stars). Shown in the inset is the incorrect scaling obthimken the cor-
rection for the integration constant is not made.

radius is presented in Appendix6.

The evolution of the recoil velocity for the entire sequetisted in Table4.1is dis-
played in the left panel of Figt.12 Itis apparent that the suitable choice of the integration
constant discussed in the previous section yields earliygvos that are always mono-
tonic in time and that, as expected, the largest recoil Vtglix generated for the case in
which the asymmetry is the largest, namely for the binary The left panel Fig4.12
also shows that the profile for each case is rather simildh the largest contribution to
the kick velocity being generated in a period of ab®ui\/, corresponding roughly to the
timescale of the last orbit and merger.

It is worth noting that during the final stages of the evolatithe recoil velocity is not
monotonic but shows at least two peaks, whose relative aidplidepends on the spin
ratio. For spin ratiosv —1 the first peak is hardly visible, while the second one is the
most pronounced one. As the spin ratio increases, howénefirst peak becomes more
prominent and for spin ratios 1 it becomes comparable with the second one or even
larger for binaries:6 andr7. As mentioned in the previous Section and further discussed
in the following one, the appearance of these peaks is tetatthe interplay of different
mode-contributions during the ringdown. The second peakarticular, can be associ-
ated to a rapid change in the recoil-velocity vector and fsrimkthe characteristic “hook”
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Table 4.3: Final kick velocities in units okm/s for the models listed in Tab4.1
Columns two and three show the values obtained using theegawgriant
quantitieszQZ;l+ andV, respectively and taking into account the integration
constant. Columns four and five, on the other hand, show thdtseobtained
when ignoring the integration constant. The same data asersin the right
panel of Fig4.12

Model | Q" Wy Q)" noic Wy noic
r0 263.2 261.8 288.9 288.4
rl 222.4 2214 211.9 210.6
72 187.1 186.2 174.8 173.3
r3 143.3 144.0 155.9 157.3
r4 104.8 106.1 100.0 101.3
) 814 815 76.9 77.0
r6 456 459 55.4 56.2
r7 194 20.6 13.8 14.8
r8 0.0 0.0 0.0 0.0

discussed in the left panels of Figkl0and4.11 As a representative measure of the
accuracy in determining these recoil velocities, we havdezhout simulations also for
the binary systems8, in which the black holes have identical spin and thus frontitvho
kick should result. The computed recoil velocity has beemébto bel0~* km /s, clearly
indicating that our evolutions do an excellent job in presegy the orbital symmetry of
these binaries.

The recoil velocities attained by the final black holes amarshfor in the left panel
of Fig 4.12 can be studied in terms of their dependence on the spin ¢afi@,, which
can also be regarded as the “asymmetry” parameter of thersysieing the largest for
aj/az = —1 and zero fora; /as = 1. These velocities are collected in Tale3 and
are shown as a function af; /a5 in the right panel of Figt.12 where | have indicated
with open circles the values obtained usiig and with stars those obtained using the
gauge-invariant perturbations.

The data in the right panel of Fig.12is shown together with its error-bars, which
include errors from the determination of the integratiomatants, from the truncation
error and from the amount of ellipticity contained in thetialidata. We have estimated
these errors to be df km/s for binariesr0—r5 and of8 km/s for binariesr6 andr7.
Shown also in the inset is the recoil data obtained when iggdhe integration constant.
When the proper evaluation of the initial transient is nodmathe data does not show
the correlation with the spin ratio which is instead showntlyy corrected data. The
correlation found the one predicted by PN studies. Recatluking PN theory at the 2.5
order, Kidder [172] has concluded that in the case of a arcumon-precessing orbit, the
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Figure 4.13: Upper panel: Comparison of the computed data for the recoil velocity
(open circles) with the least-squares fits using eitherealir{dotted line)
or a quadratic dependence (dashed lihewer panel:Point-wise residu-
als computed with the linear (dotted line) or a quadraticiéshed line).

total kick for a binary system of arbitrary mass and spiroratin be expressed as [148]

*(1—q) a2q*(1 — qa1/az)

Vi = c +c
— Gay (1_ﬂ>, (4.41)
a2

whereq = M; /M, is the mass ratio and is equal to one for the binaries coresideere,
thus leading to the second form of E4.41). The coefficients; andé, = ¢2/32 depend
on the total mass of the system and on the orbital separatiaiah the system stops
radiating, which is intrinsically difficult to determine thiprecision since it lies in a region
where the PN approximation is not very accurate. Indeed, meketfiat the coefficient,

is not really a constant in the case of equal-mass binariesdther, it can be seen to
depend at least linearly on the spin ratio.

This is shown in Fig4.13 whose upper panel offers a comparison among the com-
puted data for the recoil velocity (open circles) with thadesquares fits using either
a linear (dotted line) or a quadratic dependence (dashedl lith is quite apparent that
a linear dependence an /as, such as the one expected in E4.4Q0) for c; = const.
does not reproduce well the numerical data and yields puise-residuals of the order of
20km/s. These are shown with a dotted line in the lower panel of £i§3 A quadratic
dependence ot /a2, on the other hand, reproduces the numerical data veryynieeh
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Figure 4.14: The total kick calculated via Eq4(36) up to¢ = 7 is compared to the
contributions of individual termg; andg., as well as the sum of term
excluding these. In the case of the system (left panel) the spins are
anti-aligned and the, term is dominant and th@ term does not provide
a significant contribution. In the case of thesystem (right panel), on the
other hand, the spins are essentially aligned and the whelg,tterm is
still dominant, they; term also makes a significant contribution.

residuals that are of the order ®km /s, as shown with a dashed line in the lower panel
of the same figure, and thus compatible with the reported-bars.

We can re-express Egt.@1) in the more generic form

a a
V| kick <a2, —1> = |aa|f <—1> (4.42)
a9 as

whereas plays here the role of a “scale-factor”. The functiftu;/as) with a;/ay €
[—1, 1] and maximum at; /as = —1 can then be seen from numerical-relativity calcu-
lations (or higher-order PN approximations) and our |leagtares fit suggests the expres-
sion

2
fouad, = 109.3 — 132.5 <ﬂ> +23.1 <ﬂ> km/s.
ag

(4.43)

The maximum kick velocity for a given, is then readily calculated even without a de-
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tailed knowledge of the functiofi(a; /a2) as

(Ivhdc) ™ (a2) = |aa|f(=1). (4.44)

Using the data reported in Tab%e3 for a; = —0.584 we obtain for|az| = 1 that the
maximum recoil velocity attainable from a binary system @di&-mass black holes with
spins aligned to the orbital angular momentumi48 + 5km/s. This is in very good
agreement with our previous estimate made in Ref. [155] wismaller sequence and in
equally good agreement with the results reported in Ref][15

4.2.6 Mode contributions to the recoil velocity

For the models studied in the previous section we have eesluaq. ¢.36 including
modes up td = 7. In practice, however, the recoil is strongly determinedhsylower-
mode contributions. In particular, the two terms

1 /30 .
q1 = 48—7T 7@;2 Q:J;i:p (4.45)
1 .
@2 = —EQ;_Q Q51 (4.46)

are the dominant ones. This can be seen in &4 where the time evolutions of the
termsq; andg, are plotted (dotted and dashed lines, respectively) tegetith the total
kick calculated via Eq.4.36 (solid line), and with the contributions from all otherres
up to/ = 7 excludingq; and g (long-dashed line). A rapid inspection of the figure
reveals that the kick is dominated in particular by theéerm, whereas the, term has a
magnitude of the order of all the other modes combined. Alamnésult holds for each
member of the sequence, so that the two contributions diterthe final kick to more
that 95%. The mode contributions are vector quantities, just as itle \elocity itself,
and are not always aligned.

This coupling also goes some way to explain some featurebeofedcoil velocity
profiles displayed in Figd.12 As mentioned in the previous section, the binari¢go
r8 show a double peak in the evolution of the kick velocity befitrsettles down to the
final value. The same feature can be seen in the more asyromtetd 3 binaries, where
it appears as a flattening of the slope near the maximum. Hiecsvo peaks are shown
both by the gauge-invariant and by tig-based techniques we do not believe them to be a
simple numerical artifact. Overall, the properties of teeail velocity near its maximum,
and before it settles to the final value, are determined bysdlative phases of the two
contributions identified above. An analysis of the tegmandg, in vector-space reveals
that when they are relatively aligned at the peak of the acatbn, there is a clear single
peak in the evolution.

4.2.7 Angular Momentum and Mass Conservation

In this section we discuss the radiated angular momentureeid)y during the evolution
of the different initial-data sets. | compute the radiategudar momentum and mass
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by calculating the difference between the initial data dmat bf the final black hole,
and then compare these quantities with the correspondiag measured in terms of the
emitted gravitational radiation. The differences in the independent estimates serve as
indicators of the conservative properties of the code.

The radiated angular momentum can be simply written as ffevelice between the
initial and final values
Jrad = Jﬁn - Jini> (447)

where, as a result of the conformal flatness of the initiakddice, J;,,; is given by the
simple expression (see for example [165-167])

Jini = JADM =(C1 x p1+ Cy x P2 + S|+ 55 (448)

HereC;, p; and S; are the position, the linear momentum and the spin ofitieblack
hole. The final angular momentud,,, on the other hand, is set to be equal to the spin
of the final black hole after all the radiation has left the pomational domain. Two
different methods are used to obtain this measure, both whadre based on properties
of the apparent horizon of the final hole.

The first method employs the isolated/dynamical horizomfdism and searches for
a rotational Killing vectorg® on the final apparent horizon so as to measure the spin of
the final black hole as [186—188]

1
J=—— j'{ K¢ d?V . (4.49)
87T S

This expression4.49 is valid on any sphere where a Killing vectof can be found,

and is therefore a quasi-local measure of the angular mammenin particular, at large
distances where the spacetime is close to axisymmetriog ihea good approximation
to an angular Killing vector, and we can apply this exprassamdetermine the angular
momentum of the spacetime. Note also that Bi49 is identical to the ADM angular
momentum when evaluated at spacelike infinity [187, 188].

The second method, assumes that the final black hole hagigetd Kerr one and uses
the rotational-induced distortion of the apparent horiabtie final black hole to estimate
its spin. Defining”),, andC. to be respectively the apparent horizon’s polar and egator
proper circumferences, their ratfe. = C,/C. will undergo damped oscillations as the
perturbed black hole settles to a Kerr state through thei-gueaial ringing. The final
value ofC'. can be expressed as a nonlinear function of the dimensggjgs parameter
a=J/M? as [189-191]

Cy(a)

:1+mE<—( i ) (4.50)

a
14+ V1 —a?)?

whereE (k) is the complete elliptic integral of the second kind

w/2
E(k) = / V1 — ksin? 0d . (4.51)
0

™
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Figure 4.15: Left panel: Dependence on the spin ratio of the initial total angular mo-
mentum.Ji,; [as computed from Eq4(48)], of the radiated angular mo-
mentumJ;.q [@as computed through the gauge-invariant waveforms], and
of the final spin of the black holég,,. All quantities show a linear behav-
ior, whose coefficient are collected in Taldlgl. Right panel:Relative er-
ror AJ/Jiy; in the conservation of the angular momentwf Eq. @.55)].
Different curves refer to whether the final spin of the blackehs com-
puted using the isolated/dynamical horizon formalisma(tgles) or the
distortion of the apparent horizon (squares). In both c#seerror is of
aboutl% at most for simulations at the medium resolution.
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By inverting numerically Eq.4.50 we obtaina from the late timeC,. that is measured
from the apparent horizon shape. For computingne multipliesa by the square of the
final mass, which we take to b¥, ,,, — M,,q4. An alternative choice involving the total
mass Eq.4.17) as measured from the apparent horizon would lead to ealigitie same

results.

As mentioned at the beginning of this section, the detertiginaf the radiated angu-
lar momentum can also be done using directly the asymptaiieiorm amplitudes .
andhy as [182,192,193]
d>J 2

T = " 16r (OhOsl’y + OuhkOsh3) (4.52)

where the amplitudé:, and hy themselves can be expressed either in terms of the
Zerilli-Moncrief gauge-invariant variable®, , @/ or, alternatively, in terms of the
Newman-Penrose scaldr,. A comparison between the two approaches is presented in
AppendixA.6, where it is shown that the differences are minute. Becaiibésphereafter

we will refer to asymptotic amplitudes measured in term$iefgauge-invariant variables
only. Additional details on the resolution of the extranti®-sphere are also presented in
AppendixA.5.

The left panel of Fig4.15summarizes this comparison by showing, as functions of
the spin ratiau; /as, Ja, from Eq. @.49), J..q from Eq. @.52) both adding nicely to yield
Jini- Note thatJiy,; is growing linearly as it is obvious from E4.48), but also that that a
similar behavior is shown by the radiated angular momentamd fience by the final spin
of the black hole). Using a linear fitting we can derive pherooiogical expressions for
the relative losses of angular momentum

Jrad J ai J
_— —_ 4-
Jini grad <a2> + Xrad » ( 53)

and the relative spin-up of the final black hole

Jtin
fi :€]<%>+xé. (4.54)

The fitted values foeZ | . andxZ , . are presented in Tabke4 and readily indicate
that the system loosexl% of its initial orbital angular momentum in the case of anti-
aligned spins and up 1% for aligned spins.

Expressions4.53 and @.54) do not have a PN counterpart and yet, since they depend
only on the spin-ratio, they represent simple and poweri@yswof estimating both the
efficiency in the extraction of angular momentum and the gpithe final black in a
binary merger when the spins are orthogonal to the orbitaigdl This information could
be easily injected in thos&/-body simulations in which the interaction of binary black
holes is taken into account [194] and thus yield accuraimagts on final distribution of
black-hole spins.

Since we have two independent and different ways of comgutip, [i.e., either from
Eq. @.52 or from Eq. @.47)] we can quantify our ability to conserve angular momentum
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Table 4.4: Coefficients for the phenomenological expressich$3 and @.54 (and
the corresponding coefficients faxM,.q, an/M) by means of which it is
possible to compute the relative losses of energy and angumentum, as
well as the final mass and spin of the black hole in binary ntsrijewhich
the spins are orthogonal to the orbital plane.

&, 0.0513[ ¢~ 0.0118
xlq 0.2967| xM,  0.0437
¢ -0.0513| ¢ -0.0118
Xf,  0.7033| xM  0.9563

Table 4.5: Final and radiated angular momenta and masses, computedteogauge-
invariant waveforms. Shown is also the radiated spin andsmelative to
their initial values, which are listed in Tas.1

al/a2 Jﬁn Jrad Jrad/JADM Mﬁn Mrad Mrad/MADM
r0 -1.00 0.6244 0.2008 0.2434 0.9536 0.0320 0.0325
rl -0.75 0.6391 0.2222 0.2580 0.9507 0.0348 0.0353
r2 -0.50 0.6530 0.2449 0.2727 0.9482 0.0374 0.0380
r3 -0.25 0.6676 0.2670 0.2857 0.9461 0.0396 0.0402
r4  0.00 0.6827 0.2886 0.2971 0.9439 0.0420 0.0426
r5 0.25 0.6966 0.3106 0.3084 0.9412 0.0450 0.0456
r6  0.50 0.7075 0.3363 0.3222 0.9376 0.0488 0.0495
r7 075 0.7181 0.3626 0.3355 0.9344 0.0523 0.0530
r8 1.00 0.7292 0.3878 0.3471 0.9315 0.0557 0.0564
by measuring the normalized residual
AJ Jﬁn + Jrad - Jini
Jini Jini . (4.55)

This is shown in the right panel of Fig.15and the two different lines refer to the two
measures of the final spin of the black hdle,, either via the isolated-horizon formal-
ism (triangles) or via the distortion of the apparent hamifequares). In both cases the
error is extremely small, ranging between % and0.2% for simulations at the medium
resolution, and thus providing convincing evidence of aiaqusacy in the preservation of
angular momentum. It should be noted that while there seerbs & small advantage in
using the isolated horizon measure, the differences arenadl to be significant. A small
change in the procedure, such as the use of the mass meaguthd apparent horizon
via Eq. @.50 in place of M;,; — Mg, (as we are doing in this figure), would counter the
advantage.

We proceed to a similar analysis for the conservation of thsestenergy of the sys-
tem by considering the difference between the the initiassmand final plus the radi-
ated masses. As for the initial mass we obviously considerAdlM mass of the sys-
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tem M, ,,, while the radiated energy/,.q is computed through the gravitational wave-

forms [182, 195, 196]
d°E r? .2
- (‘m‘ +

2
= — . 4.
dtdQ) 16w > (4.56)

As for the angular momenta, we have chosen to express thehagll side of Eq.4.56
in terms of the Zerilli-Moncrief functions and to use as finass of the black hol&/g,,,
the one given by Eq4(17) and measured via the apparent horizon.

hix

The left panel of Fig4.16showsM, ., Mg, andM,,q, with the latter rescaled the
radiated by a factor of ten to make it more visible. Also irstbase there is a clear linear
behavior of both the radiated energy and of the final masseobtick hole in terms of
the spin ratio. As a result, phenomenological expressibtizedype @.53 and @.54) are
possible also fo g, andM,.4. The corresponding values of the coefficiefﬁg% fn @Nd

xM, . are also presented in Tabled

Finally, to check the precision at which the energy is coresstr and in analogy to
Eq. @.59, we have computed the relative error

AM _ Mg, + Mrad — MADM

= , (4.57)
MADI\I M

ADM

and plotted this as a function of the spin ratio in the rightgdaf Fig.4.16 Clearly, also
the energy losses are extremely small and for all the bigamighe sequence, the error in
the energy balance is beldWw52% at the medium resolution. Tabfe5 summarizes the
numerical results for the radiated energy and angular mamrefor the members of the
sequence.

4.3 Spins

While the recent possibility of measuring accurately thalfspin through numerical-

relativity calculations represents an enormous progthes;omplete coverage of the full
parameter space uniquely through simulations is not a&iaption. As a consequence,
work has been done to derive analytic expressions for thé dpia which models the

numerical relativity data but also exploit as much inforimatas possible from perturba-
tive studies, and from the symmetries of the system [1, 887]. In this sense, these
approaches do not amount to a blind fitting of the numeriektivity data, but, rather,

use the data to construct a physically consistent and mattieatty accurate modelling of

the final spin. Despite a concentrated effort in this dimettihe analytic expressions for
the final spin could, at most, cover 3 of the 7 dimensions of{iexe of parameters [8].
Here, | show that without additional fits and with a minimatl geassumptions it is pos-

sible to obtain the extension to the complete space of pdesmand reproduce all of the
available numerical-relativity data.

A number of analytical approaches have been developed loggretars to determine
the final spin of a binary coalescence [5,152,197-199]. Yecgntly, a method, inspired
by the dynamics of a test particle around a Kerr BH, has beepgsed for generic bi-
naries ( [4], BKL hereafter). The approach assumes thatrnigelar momentum of the
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final BH is the sum of the individual spins and of the orbitagjalar momentum of a test
particle on the last-stable orbit of a Kerr BH with the samim gfarameter as that of the
final BH.

Here, we combine this with the data obtained in recent sitioms to provide a phe-
nomenological but analytic estimate for the final spin inreaby BH system with arbitrary
mass ratio and spin ratio, but in which the spins are comstdatio be parallel to the orbital
angular momentum. In addition to the data presented in [ad three simulations of
equal-mass, high-spin binaries and three simulations efjual-mass, spinning binaries
(see Tablet.6). Other data is taken from unequal-mass, nonspinning ie &8, 7, 139],
and of equal-mass, spinning binaries [1,2]; all of the ABbda summarized in Tabie 2

4.3.1 Methods and Results

Analytic fitting expressions foug, have so far been built using binaries having spins
that are eitherligned or antialignedwith the initial orbital angular momentum. This is
because in this case both the initial and final spins can begteal in the direction of
the orbital angular momentum and it is possible to deal simagth the (pseudo)-scalar
guantitiesay, as andag, ranging between-1 and+1. If the BHs haveequal mas$ut
unequalspins that are eithgparallel or antiparallel, then the spin of the final BH has
been shown to be accurately described by the simple anéhyjtlg

agn(a1,az) = po + p1(ar + az) + pala + az)*. (4.58)

When seen as a power series of the initial spins, expres4ibf cuggests an interesting
physical interpretation. Its zeroth-order term, in faetn de associated with the (dimen-
sionless) orbital angular momentum not radiated in grawital waves and amounting
to ~ 70% of the final spin at most. The first-order term, on the otherdhaan be seen
as the contributions from the initial spins and from the smibit coupling, amounting
to ~ 30% at most. Finally, the second-order term, can be associaitidtlve spin-spin
coupling, with a contribution to the final spin which is©f4% at most.

If the BHs haveunequal masséut spins that arequaland parallel, the final spin is
instead given by the analytic fit [8] as a function of the tweefivariables in the problem:
the symmetric mass ratie = M, M, /(M; + M>)? and the spin of the initial BHg =
J/M?,i.e. amn = Jan/MZ, = agn(a, v). By constructiona; = as = a, anda/|a| =
+L/|L|, whereL is the orbital angular momentum. We next expregsas a third-order
polynomial ofv anda

afin = So + s1a + 32a2 + 33a3 + S4CL2V + 35cw2 +
toav + tv + tav? + ta3. (4.59)

Expression§.9) is a lowest-ordeansatz It intends to capture the behaviour of a function
known exactly only in the extreme mass-ratio limit (EMRLYdamhich has support from
numerical simulations in two restricted regimdse., v = 1/4; 0 < |a| < 0.75 and
0.16 < v < 1/4; a = 0. A-priori there is no reason to believe expectation thatv, a)
from the proposed fit will capture the general behaviour welt it does.
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Table 4.6: Initial parameters of the new binaries computed at the ARl Tifferent
columns contain the initial spin, the symmetric mass ratio, half of the
initial separation:/M = 1(zy — 2»), the dimensionless initial angular mo-
mentum.J = J/(uM), the numerical and fitted values fog,, and the cor-
responding relative error.

a v x/M J ag. a®  err| (%)
t8 -0.5840 0.2500 3.1712 2.432 0.4955 0.4981 0.53
ta8 -0.3000 0.2500 3.7078 3.000 0.5941 0.5927 0.23
tb8 -0.8000 0.2500 3.8082 2.200 0.4224 0.4227 0.08
th8¢ -0.8000 0.2500 4.8600 2.400 0.4266 0.4227 0.92
pl -0.8000 0.1580 3.2733 0.336 0.0050 0.0046 9.89
p2 -0.5330 0.1875 3.3606 1.872 0.2778 0.2794 0.57

3 -0.2667 0.2222 3.4835 2.883 0.5228 0.5216 0.23

Given the available numerical estimates, it is possibleatoutate the coefficients,—
s5, andtg—ts by simply performing a two-dimensional (2D) least-squatefithe data.
This, however, would require a lot of care and is likely todea inaccurate estimates
for the coefficients. This is due mostly to the fact that thacgpof parameters presently
accessible to numerical simulations is rather small. Ridiaesults are in fact available
only for spins|a| < 0.8 and mass ratiog = M, /M; 2 0.25 and thus corresponding to
v 2, 0.16. However, it is possible to explagixactresults which hold in the EMRILLe., for
v = 0, to constrain the coefficients in expressi@9. It is worth emphasizing that the
EMRL results are not only exact, but also in regimes that migakrelativity simulations
cannot probe. More specifically, we can exploit that in theFdMhe final spin cannot be

affected by the infinitesimally small BH. In practice, thimaunts to requiring that
agn(a,v =0) =a, (4.60)
which constrains four of the six coefficients

30232233207 8121. (4.61)

Additional but non-exact constraints on the coefficients atso be applied by ex-
ploiting the knowledge, near the EMRL, of the functional elegence ofi5,, on the mass
ratio. A convenient way of doing this is suggested by BKL, aitthin this approach it is
possible to perform a Taylor expansionagf, for v < 1 and determine that

Ghinl(am1m0) = 2V3/3=1),  Ghinl 4y = 2V3,
Uin] (g1 gy = 2(1 +19V15/45), (4.62)

whereaf,, = Oag,/Ov. The coefficients in&.9) are thens, = /3(19v/5 — 75)/45,
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0.25

Figure 4.17: Global dependence of the final spin on the symmetric magsaat on the
initial spins as predicted by expressigh@3. Squares refer to numerical
estimates while circles to the EMRL constraints.

t1 = 23,y = [v/3(15 — 19v/5) — 90]/45. While this may seem a good idea, it leads to
bad fits of the data. We believe this is due to two distinctoaas(i) the lack of accurate
numerical data for near-extreme BHig,, |a| ~ 1, and which therefore leads to incorrect
estimates of the coefficientfj) expressions4.62 are analytic but not exact and should
be used with caution. There are, in fact, deviations fromyaieéy in v asy — 0, and
as revealed by the presence of integer powerns'6f during the transition between the
last stable orbit and the plunge (see [199]). In the case fspinning binariesd = 0),

it is now possible to verify that the deviations are indeed/\wenall [200], but this check
is not possible for very large spins. In view of this and to méke minimal number of
assumptions, we retain the analytic estimate only for thefficient ¢1, so that 6.9) has
five out of ten coefficients constrained analytically

afn = a + 840°v + ssav® + toav + 2V3v + tor® + t3d . (4.63)

Determining the remaining five coefficients from a leastasgufit of the available
data yields

sy =—0.120+0.012,  s5=—0.384 4+ 0.261,
to = —2.686 £ 0.065,  to = —3.454 £ 0.132,
ty = 2.353 & 0.548, (4.64)

with surprisingly small residuals and large error-barsydiok s;. The functional be-
haviour of expression4(63 and the position of the numerical data points are shown in
Fig.4.17
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Figure 4.18: Upper panel: Comparison of the numerical data with the 2D fit
through @.63 in the case of equal-mass binaries,+£ 1/4). Empty cir-
cles indicate the AEI data [1], stars the FAU-Jena data §[png-dashed
line the BKL, and a short-dashed one the libwer panel:residuals be-
tween the different estimates and the fit.
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Figure 4.19: Upper panel: Comparison of the numerical data with the 2D fit
through .63 in the case of nonspinning binaries. Empty circles indi-
cate the Jena data [3], stars the Goddard data [4]], a loshgeddine the
quadratic EOB fit [5] and a short-dashed line our 2D fibwer panel:
residuals between the different estimates and the 2D fit.

4.3.2 Results

The estimate for the final spin in the case of equal masseshar@bmparison with avail-
able data and estimates is made in Bid.8 The upper panel shows the numerical esti-
mates, [circles for the AEI data [1] and stars for the FAUaldata [2]], the BKL estimate
and our 2D fit through4.63. The lower panel shows the residuals between the different
estimates and the 2D fit; these are always of a few percentaolypecome larger for the
BKL estimate whem: < 0.

Despite the fact that the cubic dependence assumdddn éxpression4.63 is only
quadraticwith . Whenv = 1/4, it confirms what was obtained [1], indicating that, for
equal-mass binaries, the next order will be four. Usih&® and 6.10 we estimate that
the minimum and maximum final spins for an equal-mass binayg = 0.3502+0.03
andag, = 0.9590 + 0.03, respectively.

For nonspinning binaries, expressiagh@3 is cubic inv and a comparison with the
available data and the estimate from the EOB approach caubiith test-mass limit
predictions for the ringdown [5] is shown in Fig.25 In particular, the upper panel
shows the numerical values, [empty circles for the Jena[@8htnd stars for the Goddard
data [4]], a long-dashed line for the quadratic EOB 1D fit [Bfia short-dashed line for
our 2D fit. The residuals in are shown in the lower panel.

A physically useful condition that can be deduced from thdi2Bre the values of the
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initial spin and mass ratio that will lead to a firs¢hwarzschilBH [4, 151]. In practice
this amounts to requiringg,(a, ) = 0 in (4.63 and this curve in théa, v) plane is
shown in the upper panel of Fig.20 Binaries on the curve produce Schwarzschild BHs,
while binaries above the curve start with a positive totgudar momentum and end with
a positive one; binaries below the curve, on the other hatadt with a positive total
angular momentum and end with a negative aree, with a globalflip. Also shown in
the upper panel of Figt.20is the prediction from BKLuag, . |pe = 20V3/(2v — 1),
The two estimates are very similar for all valuesrofind small differences appear for
v 2 0.15, where the BKL estimate is less accurate. Shown with a ceod®eibinaryp;
(cf., Table4.6) which yields a final BH with spirg, = 0.005. The numerical value is
between the BKL prediction and the 2D fit.

The BKL is expected to be particularly accurate for 1 and its prediction in this
regime is captured very well by the 2D fit (of course the twadprtions are identical for
v = 0). This is shown in the lower panel of Fig.20with different curves referring to
v = 0.001,0.01 and0.1; interestingly, the differences are small even #oe= 0.1. It
is simple to derive the value af which will produce a final BH with thesamespin as
the initial ones. This amounts to requiring that, (a, ) = a in (4.63 and the resulting
solution is shown in Figd.21; the axisy = 0 is a trivial solution and a magnification of the
behaviour away from the EMRL is shown in the inset. For equoass binaries the critical
value isaqit = 0.9460, in good agreement with the BKL estimaig;; = 0.948 [4].

The minuteness of the region for whieh,, < a (dashed region) suggests that BHs from
aligned-spins binaries are typically spun-up by mergers.

By settingy = 1/4 and2a = ay + a9 in (4.63, we verify that the coefficients;—
s5 andtp—t3 coincide, within the error-bars, with the coefficiepts p; andp, reported
in [1] for equal-mass, unequal-spin binaries. The fact thaffit here is equivalent to, but
has been independently derived from, the one for the egaabpunequal-spin binaries,
is an indication of its robustness. Indeed, it is possiblextend 4.63 to the whole
(a1, a2,v) spacd.e., to describe the final spin of generic aligned, unequal;spiequal-
mass BH binaries, by replacingwith (a1 + a2¢?)/(1 + ¢?). The resulting expression
reduces to4.63 for unequal-mass, equal-spin binaries, and to the one]ifoflequal-
mass, unequal-spin binaries. Our suggested extensi@gh&d (o the (a;, as, ) sSpace is
the simplest one which recovers, for aligned spins, the-testied limits of equal-mass,
unequal-spins and unequal-mass, equal-spins.

The dependence of the final spin on the mass ratio in the casdrefne aligned BHs
is particularly challenging to calculate and not yet inigeed accurately by numerical
calculations. The predictions of expressidne@ in this limit amount to mere extrapola-
tions and are therefore accurate to a few percent at mostn Asample, when = 1, the
fit (4.63 is a non-monotonic function with maximuny,, ~ 1.029 for v ~ 0.093; this
clearly is an artifact of the extrapolation.

agn(a,v) = a + sga’v + ssav® + toav +
V3v + tor? + t30° (4.65)
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Figure 4.20: Upper panel: Set of initial spins and mass ratios leading to a final
Schwarzschild BHi.e,, agy,(a, ) = 0. The two curves refer to the BKL
estimate (long dashed) and to the 2D fit (short dashed), cagely. Indi-
cated with a star is a numerical example leadingdp = 0.005. Lower
panel: Comparison between the BKL prediction (symbols) and the 2D
fit (solid, dashed and long-dashed lines) near the EMRL egffit curves
refer to different values af and the match is complete for= 0.
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ing the same spin as the initial ones, ag,(a, ) = a. A magnification is
shown in the inset, where the dashed/non-dashed regias tefeinaries
spun-down/uy the merger.

wherev is the symmetric mass ratie = M;M,/(M; + Ms)%. Although obtained
independently in [1] and [8], expressions {8 and @.65 are compatible as can be seen
by considering 4.65 for equal-mass binaries (= 1/4) and verifying that the following
relations hold within the computed error-bars

1 S5 t(] S4

=—+ =4+ — = —. 4.66

As long as the initial spins are aligned (or antialignedhulite orbital angular momen-
tum, expression4.65 can be extended tonequal-spin, unequal-ma$énaries through
the substitution
ai + a,gq2

1+ g2

To obtain this result, it is sufficient to considdr%8 and @.65 as polynomial expressions
of the generic quantity

a — a=

(4.67)

. 4.68

1+ ¢? (4.68)
whereayo; = (a1 + a2q?)/(1 + ¢)? is the total dimensionless spin for generic aligned
binaries. In this way, expressiorn4.%8 and @.65 are naturally compatible, since=

(a1 + a2) /2 for equal-mass unequal-spin binaries, &nd « for unequal-mass equal-spin
binaries. Furthermore, the extreme mass-ratio limit (EMBflexpression4.65 with the
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substitution 4.67) yields the expected resuliz, (a1, a2, v = 0) = a;.

As already commented above, the predictions of expres§iodS and @.67) cover 3
of the 7 dimensions of the space of parameters; we next shavtdim cover the remain-
ing 4 dimensions and derive an analytic expression for thgnihade of the dimensionless
spin vector|ag, | of the BH produced by the coalescence of two generic BHs mgenf
the mass ratig and of the initial dimensionless spin vectars,. To make the problem
tractable analytically, 4 assumptions are needed. Whiteesof these are very natural,
others can be relaxed if additional accuracy in the estimifes, | is necessary. Remov-
ing any of these assumptions inevitably complicates thuggc introducing additional
dimensions, such as the initial separation in the binarheradiated mass, in the space
of parameters.

As a result, in the simplest description the required assiompare as follows:

(i) The mass radiated to gravitational wavéf.,q can be neglected i.eMg, = M =
M + Ms. We note thatVl,,q /M = 1 — Mg, /M = 5— 7 x 10~2 for most of the binaries
evolved numerically. The same assumption was applied imtlagyses of [1, 8], as well
as in [4]. Relaxing this assumption would introduce a depaod on\/;,, which can only
be measured through a numerical simulation.

(i) At a sufficiently large but finite initial separation tHmal spin vectorSg, can be
well approximated as the sum of the two initial spin vectord af a third vector

Stn = S1+ 5+ E, (4.69)

Differently from refs. [151] and [4], where a definition siani to (4.69 was also intro-
duced, here we will constraié by exploiting the results of numerical-relativity calcula
tions rather than by relating it to the orbital angular motmenof a test particle at the
innermost stable circular orbit (ISCO). When viewed as esggping the conservation of
the total angular momentum, ed.§9 also defines the vectdras the difference between
the orbital angular momentum when the binary is widely satear, and the angular
momentum radiated until the mergér. 4, i.€., =L Jpq.

(iii) The vector? is parallel to L. This assumption is correct whey = —S, and
g = 1 [this can be seen from the post-Newtonian (PN) equations5abiler], or by
equatorial symmetry when the spins are aligned vlitor whenS; = Sy = 0 (also
these cases can be seen from the PN equations). For moralgenefigurations one
expects tha? will also have a component orthogonal foas a result, for instance, of
spin-orbit or spin-spin couplings, which will produce inngeal a precession df. In
practice, the component éforthogonal taL will correspond to the angular momentum
Jl}ad radiated in a plane orthogonal Ig with a resulting error in the estimate |(ﬂ which
is ~ |52 /1€ ~ | T5, 12/ (2v/3 M My)?. MeasuringJ L, via numerical-relativity sim-
ulations, or estimating it via high-order PN equations,risoAvious way to improve our
approach. A similar assumption was also made in ref. [4% distrophysically reasonable,
, however, given that spins should tend to align during gadpiral [201-203].

(iv) When the initial spin vectors are equal and opposfie & —S-) and the masses
are equal § = 1), the spin of the final BH is the same as for the nonspinningri@a
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Stated differently, equal-mass binaries with equal andsitg-spins behave as nonspin-
ning binaries, at least when it comes down to the properfieisedinal black hole. While
this result cannot be derived from first principles, it reffethe expectation that if the
spins are the same and opposite, their contributions to tiaé $pin cancel exactly for
equal-mass binaries. Besides being physically reasgntitideexpectation is met by all
of the simulations performed to date, both for spins alignétl L [1, 8] and orthogonal
to L [153]. In addition, this expectation is met by the easilydieg-order contribu-
tions to the spin-orbit and spin-spin point-particle Haarilans and spin-induced radia-
tion flux [152,204]. A similar assumption is also made, althlo not explicitly, in ref. [4]
which, for Siot = 0, predicts. = 0 and|ag,| = Lown(t = 0, |agyn|)/M = const. Ef. egs.
(12)—(13) in ref. [4]].

Using these assumptions we can now derive the analytic esiprefor the final spin.
We start by expressing the vector relatidn6® as

afin = (a1 + axq® + £q) (4.70)

(1+q)?

whereag, = Sg,/M? [cf. assumptior())], £ = £/(M;Ms), a9 = S12/M%,, and its
norm is then given by

1
sl = s [l + laafa* + 2laslfar]¢? cosa+

2 2 2 1/2
2 (|Jar| cos B + |aslg? cos ) [€lq + 6%%] (4.71)

where the three (cosine) angless and~ are defined by

-~

cosa=aq -Gy, cosf=aq- ¥, COSnydQ-Z. (4.72)

Becausea; > || S12 and€ || L [cf. assumption(iii)], the anglesa, 5 and~ are also
those between the initial spin vectors and the initial afdingular momentum, so that it
is possible to replacé; » with §; » andZ with L in (4.72. «, # and~ are well-defined if
the initial separation of the two BHs is sufficiently largd. [assumptior{ii)] and that the
error introduced by assumptidiii) in the measure afos a, cos 8 andcos - is also of the
order of| J.L|/|€].

The angledg,, between the final spin vector and the initial orbital angat@mentum
can be calculated frofag, |. Because of assumptidii) , the component of the final spin
in the direction ofL is [cf. eq. @.70)]

2

I ~  |ai|cos B + |az|q® cosy + |£€|q
g = Qfp - L = , 4.73
fin fin (1 q)2 ( )

so thatcos 0g, = aﬂn /|lasn|, @and the component orthogonal to the initial orbital angula
momentum isig. = |agy| sin Ogy.

In essence, therefore, our approach consists of congigéna dimensionless spin
vector of the final BH as the sum of the two initial spins and dhiad vector parallel
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to the initial orbital angular momentum when the binaries\aidely separated. Implicit
in the assumptions made, and in the logic of mapping an lksitie of the binary into
a final one, is the expectation that the length of this veaa@n intrinsic “property” of
the binary, depending on the initial spin vectors and mass, raut not on the initial
separation. This is a consequence of assumgtipnbecause the vectdrmeasures the
orbital angular momentum that cannot be radiated, it carhbaght of as the angular
momentum of the binary at the “effective” ISCO and, as sucbamnnot be dependent on
the initial separation.

A consequence of our assumptions is tagt for a BH-binary is already fully deter-
mined by the set of coefficients, ss, 1y, t2, t3 computed to derive expressioh65. The
latter, in fact, is simply the final spin for a special set dixes for the cosine angles; since
the fitting coefficients are constant, they must hold alsgéeric binaries.

In view of this, all that is needed is to measul€ein terms of the fitting coefficients
computed in refs. [1,8]. This can be done by matching exje44.73 with (4.65 [with
the condition 4.67)] for parallel and aligned spinsx(= 3 = v = 0), for parallel and
antialigned spinso{ = 0, = v = ), and for antiparallel spins which are aligned or
antialigned ¢ = 8 = 7w,y = 00ra = v = m, § = 0). This matching is not unique,
but the degeneracy can be broken by exploiting assumfitipand by requiring thalt¢|
depends linearly onos «, cos 3 andcos v. We therefore obtain
54
“4=Txep

ssV +tg + 2
( 1+ ¢?

V3 + tov + t31?. (4.74)

(|‘11|2 + |az|?q* + 2|a1||as|q? cos a) +

) (Ia1] cos B+ aslq? cosy) +

We now consider some limits of expressiods7() and @.74). First of all, when
g — 0, (4.71) and @.74 yield the correct EMRLj.e., |ag,| = |ai|. Secondly, for
equal-mass binaries having spins that are equal and aaltgda(4.71) and @.74) reduce

to
¥’ 3 t t
4 _ Y3t ts_ L gess, (4.75)

el =7 =5+t 5t

This result allows us to qualify more precisely a comment enbdfore: because
for equal-mass BHs which are either nonspinning or haveleanéopposite spins, the
vector €| does not depend on the initial spins, expressiidg states thaté| M2 /4 =
|€|M? /4 = |€| My Ms is, for such systems, the orbital angular momentum at thee e
ISCO. We can take this a step further and conjecture [at; M, = |£] is the series
expansion of the dimensionless orbital angular momentuimeaSCO also founequal-
masshinaries which are either nonspinning or with equal and sjtpspins. The zeroth-
order term of this series (namely, the te2Ri3M/; M) is exactly the one predicted from
the EMRL.

Finally, we consider the case of equal, parallel and ali¢avgthligned spins|&sz| =
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Figure 4.22: Left panel: Rescaled residual for aligned binaries. The circles refer t

equal-mass, equal-spin binaries presented in refs. [£83, @iangles to
equal-mass, unequal-spin binaries presented in ref. [Arg@] squares to
unequal-mass, equal-spin binaries presented in refs-§3, 6lere and in
the right panel the “binary order number” is just a dummy tbelling
the different configurationsRight panel: The top part reports the final
spin computed for misaligned binaries. Hexagons refer ta ttam [9]
(labelled “RIT”"), squares to the data Talle/ (labelled “AEI”), circles to
data from [10] (labelled “FAU”), and triangles to data frodi] (labelled
“PSU-UTA"). Note that these latter data points refer to thigreed com-
ponentagn since this is the only component available from ref. [11]eTh
bottom part of this panel shows instead the rescaled rdsidoathese
misaligned binaries.
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af _ aj ai a5 ay  aj v___|am| On(®)

0.151 0.000 -0.563 0.000 0.000 0.583 0.250 0.692 2.29
0.151 0.000 0.564 0.000 0.151 0.564 0.250 0.846 3.97
0.413 0.000 0.413 0.000 0.413 0.413 0.250 0.815 7.86

Table 4.7: Initial parameters of the new misaligned AEI binaries.

lai|,« =0, 8 =~ =0, ), for which expressions(73 and @.74 become

agn = |ai|cos B[l + v(sq|lar]|cos B+ to+ ssv)] +
v(2V3 + tav + t3v?), (4.76)

wherecos 8 = +1 for aligned/antialigned spins. As expected, expresdlorg coincides
with (4.65 when|a4|cos f = a and with @.58 [through the coefficients4(66)] when
g = 1 and2|ay|cosf = a1 + ay. Similarly, 4.73 and @.74 reduce to 4.65 for
equal, antiparallel and aligned/antialigned spi@s|(= |ai|, « = 0, 5 = 0,y = =, or
B =m~vy=0).

The only way to assess the validity of expressiagh3l) and @.74) is to compare their
predictions with the numerical-relativity data. This isnddn Figs.4.22and4.23 which
collect all of the published data, together with the threditeahal binaries computed with
the CCATI Ecode [87] and reported in Tabde7. In these plots, the “binary order number”
is just a dummy index labelling the different configuratioi$ie left panel of Fig4.22
in particular, shows the rescaled residua, (|aan|at — |@fin|num.) % 100, for aligned
binaries. The plot shows the numerical-relativity dataweitcles referring to equal-mass,
equal-spin binaries from refs. [1-3, 6—8], triangles toaquass, unequal-spin binaries
from refs. [1, 6], and squares to unequal-mass, equal-gparies from refs. [3, 6-8].
Although the data is from simulations with different trutioa errors, the residuals are all
very small and with a scatter ef 1%.

A more stringent test is shown in the right panel of g2 which refers to mis-
aligned binaries. In the top part, hexagons indicate theemioa values forlag, | from
ref. [9], squares the ones in Taldle, circles those from ref. [10] and triangles those from
ref. [11]; note that these latter data points refer to therald componeniﬂn since this
is the only component available from ref. [11]. The agreeni®@again very good, with
errors of a couple of percent (see bottom part of the samd)pawnen if the binaries are
generic and for some the initial and final spins differ by adti®0° [9].

Finally, Fig.4.23reports the angle between the final spin vector and thelioitiatal
angular momentumg, using the same data (and convention for the symbols) as in the
right panel of Fig4.22 Measuring the final angle accurately is not trivial, patgécly
due to the fact that the numerical evolutions start at a fisgaration which does not
account for earlier evolution. The values reported in [9id@he relative error-bars) are
shown with hexagons, while the squares refer to the binarigable4.7, and have been
computed using a new approach for the calculation of theiRaalar on the AH [205].
Shown with asterisks and circles are instead the valuesgpeeldfor the data from [10,11]
by our analytic fit (asterisks) and by the point-particle magh suggested in ref. [4]
(circles).
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Figure 4.23: Using the same data (and convention for the symbols) as irighepanel
of Fig. 4.22 we here report the angle between the final spin vector and the
initial orbital angular momenturflg,,. Shown instead with asterisks and
circles are the values predicted for the data from refs [1Db¥ our ana-
Iytic fit (asterisks) and by the point-particle approachgesied in ref. [4]
(circles).

Clearly, when a comparison with numerical data is possible,estimates of the fit
are in reasonable agreement and with the smallest residdabgever, for two of the three
binaries from [9] the estimates are slightly outside therebars. Note that the reported
angles are relative to the orbital plane at a small initialaby-separation, and thus are
likely to be underestimates as they do not take into acctwengvolution from asymptotic
distances; work is in progress to clarify this. When the carigon with the numerical
data is not possible becaugg, is not reported (as for the data in ref. [11]), our approach
and the one in ref. [4] yield very similar estimates.

4.3.3 Discussion

We have considered the spin vector of the BH produced by a BHrpimerger as the
sum of the two initial spins and of a third vector, paralleltbe initial orbital angular
momentum, whose norm depends only on the initial spin vecamd mass ratio, and
measures the orbital angular momentum not radiated. Withtber fits than those already
available to model aligned/antialigned binaries, we haeasared the unknown vector
and derived a formula that accounts therefore for all of tiparameters describing a BH
binary inspiralling in quasi-circular orbits. The equaiso@d.71) and @.74), encapsulate
the near-zone physics to provide a convenient, as well ast@nd accurate prediction
over a wide range of parameters, determination of the mgngetuct of rather generic
BH binaries.

Testing the formula against all of the available numeriegihdrom recent publications
and from our own simulations has revealed differences latvike predicted and the
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simulated values of a few percent at most. This approachriasically approximate and
it has been validated on a small set of configurations. It @imiproved: by reducing the
x? of the fitting coefficients as new simulations are carried bytusing fitting functions
that are of higher-order than those in expressi@gnsg and @.65; by estimatinng{;Ld
through PN expressions or by measuring it via numerical ksitiauns.

Overall, the data sample computed numerically consist8ofaBues for|vy;.x| and
for ag, which, for simplicity, we have considered to have constardgrebars of8 km/s
and0.01, which represent, respectively, the largest errors regddrt [87]. In both cases
we have modelled the data with generic quadratic functions iandas so that, in the
case of the recoil velocity, the fitting function is

‘Ukick’ = ‘CO + cia1 + Cga% + dopaias + dras + dgag‘ . (4.77)

The fitting function on the right-hand-side @.{) is smooth everywhere but that its abso-
lute value is not smooth along the diagonal= a,. Using 6.1) and a blind least-square
fit of the data, we obtained the coefficients Kim /s)

co = 0.67 £ 1.12, dy = —18.56 £ 5.34,
e =—212.854+2.96, di =213.69+ 3.57,
ey =50.85+3.48,  dy = —40.99 £ 4.25, (4.78)

with a reducedy? = 0.09. Clearly, the errors in the coefficients can be extremelgdar
and this is simply the result of small-number statisticswieeer, the fit can be improved
by exploiting some knowledge about the physics of the pmtessimplify the fitting
expressions. In particular, we can use the constraint thakeooil velocity should be
produced for binaries having the same spia, that |uy| = 0 for a; = ag, or the
symmetry condition across the ling = a. Enforcing both constraints yields

Co = 07 C1 = _dl y C2 = _d2 ) dO = 07 (479)
thus reducing the fitting functior6(1) to the simpler expression
[vkick| = |e1(a1 — ag) + e2(af — ad)|. (4.80)

Performing a least-square fit using}§ we then obtain
c1 = —220.97 +0.78, co = 45.52 +£2.99, (4.81)

with a comparable reduced® = 0.14, but with error-bars that are much smaller on
average. Because of this, we consider expres€i@) &s the best description of the data
at second-order in the spin parameters. Usthg) @nd 6.4), we have built the contour
plots shown in Fig4.24

A few remarks are worth making. Firstly, we recall that pN&wtonian calcula-
tions have so far derived only the linear contribution in #pén to the recoil velocity
(see [148] and references therein). However, the size ofjtiaglratic coefficientd.4)
is not small when compared to the linear one and it can leadtteer sizeable correc-
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Figure 4.24: Contour plots ofjuick| @s a function of the spin parametersandas.
The diagram has been computed using express@Bsand 6.4).

tions. These are maximized when = 0 anday = £1, or whena; = £1 anday = 0,
and can be as large as20%; while these corrections are smaller than those induced by
asymmetries in the mass, they are instructive in pointingtleel relative importance of
spin-spin and spin-orbit effects during the merger and eanded as a guide in further re-
finements of the post-Newtonian treatments. Secondly,esspn 6.3) clearly suggests
that the maximum recoil velocity should be found when themasgtry is the largest
and the spins are antiparalleéle., a; = —as. Thirdly, whenas = const., expression
(6.3 confirms the quadratic scaling proposed in [87] with a senalata setdf., eq. (42)
there]. Fourthly, fora; = —as, expression®.3) is only linear and reproduces the scal-
ing suggested by [157]. Finally, using.8) the maximum recoil velocity is found to be
|vkick| = 441.94 + 1.56 km /s, in very good agreement with the results of [157] and [87].

In the same way we have first fitted the datadgg, with a function
afin = Po + P1a1 + p2ai + qoaras + qias + gaa3 (4.82)

and found coefficients with very large error-bars. As a tesuo forag, we resort to
physical considerations to constrain the coefficignts. . ¢o. More specifically, at least
at lowest order, binaries with equal and opposite spinsneiiicontribute to the final spin
and thus behave essentially as nonspinning binaries. dSdéterently, we assume that
agn = po for binaries witha; = —ao. In addition, enforcing the symmetry condition
across the line; = ay we obtain

PL=q1, D2=q2=qo/2, (4.83)
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Figure 4.25: Contour plots ofi5,, as a function of the spin parametersandas. The
diagram has been computed using expressions énd ©.8).

so that the fitting functiong.5) effectively reduces to
afn = po + p1(ar + az) + palar +az)?. (4.84)
Performing a least-square fit usirg ) we then obtain

po = 0.6883 £+ 0.0003, p1 = 0.1530 £ 0.0004 ,
p2 = —0.0088 £ 0.0005, (4.85)

with a reducedy? = 0.02.

It should be noted that the coefficient of the quadratic terr(6i8) is much smaller
then the linear one and with much larger error-bars. Givensthall statistics it is hard
to assess whether a quadratic dependence is necessanlioedraone is the correct one
(however, see also the comment below on a possible intatfmetof expressiong7)).

In view of this, we have repeated the least-square fit of tha daforcing the condi-
tions 6.6) together withp, = 0 (i.e.,, adopting a linear fitting function) and obtained
po = 0.6855 + 0.0007 andp; = 0.1518 + 0.0012, with a worse reduceg? = 0.16.
Because the coefficients of the lowest-order terms are stasirboth the linear and the
guadratic fits are well within the error-bars of the numdrgiemulations. Nevertheless,
since a quadratic scaling yields smaller residuals, weiden# to be the best represen-
tation of the data and have therefore computed the contots pi Fig.4.25using 6.7)

and 6.8).
Here too, a few remarks are worth making: Firstly, the fittatlg for the coefficient
po agrees very well with the values reported by several gro8pk3P] when studying the
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inspiral of unequal-mass nonspinning binaries. Secomraiyressionq.7) has maximum
values fora; = a9, suggesting that the maximum and minimum spinsigre= 0.9591 +
0.0022 andag, = 0.3471 4+ 0.0224, respectively. Thirdly, the quadratic scaling fai,
substantially confirms the suggestions of [134] but providere accurate coefficients.
Expression §.8) lends itself to an interesting interpretation. Being efifecly a power
series in terms of the initial spins of the two black holes ziroth-order term can be seen
as the orbital angular momentum not radiated in gravitatisaves and which amounts,
at most, to~ 70% of the final spin. The first-order term, on the other hand, @asden as
the contribution to the final spin coming from the initial spiof the two black holes and
this contribution, together with the one coming from thenspibit coupling, amounts at
most to~ 30% of the final spin. Finally, the second-order term, which igsira to expect
as nonzero in this view, can then be related to the spin-gpipling, with a contribution
to the final spin which is of- 4% at most.

The monotonic behaviour expressed BY8[ does not show the presence of a local
maximum ofag, ~ 0.87 for a; = as ~ 0.34 as suggested by [198] in the effective one-
body (EOB) approximation. Because the latter has been shma in good agreement
with numerical-relativity simulations of nonspinning bkaholes [5, 206], additional sim-
ulations will be necessary to refute these results or todwgthe EOB approximation for
spinning black holes.

Reported in the right part of Tab#e2 are also the fitted values fog,, and|vy;.x| ob-
tained through the fitting function§.3) and 6.7), and the corresponding errors. The latter
are of few percent for most of the cases and increase wp2@’% only for those binaries
with very small kicks and which are intrinsically more diffit to calculate. As a con-
cluding remark we note that the fitting coefficients computete have been constructed
using overall moderate values of the initial spin; the oxgeption is the binary.4 which
has the largest spin and which is nevertheless fitted with smiall errors ¢f. Table4.2).

In addition, since the submission of this work, another grbas reported results from
equal-mass binaries with spins as highuas= a; = +0.9 [2]. Although also for these
very high-spin binaries the error in the predicted valuesf i5% at most, a larger sample
of high-spin binaries is necessary to validate that thagjtéxpression®(3) and ©.7) are
robust also at very large spins.

We further performed simulations with an unequal massestgded spins (see Ta-
ble 4.6) and obtained a third order polynomial fit flarg,, | from arbitrary symmetric mass
ratiov = MM, /(M; + M5)? and the aligned equal spins of the initial BHs= .J/M?2,
i.e.,ag, = Jﬁn/Mén = afn(a, v)

afin = So + s1a + 32a2 + 33a3 + S4CL2V + 35cw2 +
toav + tv + tav? + tav>. (4.86)

as shown in figurd.17. Determining the remaining five coefficients from a leastesgq
fit of the available data yielded

sp=—0.1294+0.012, s5=—0.384+0.261,
to=—2.686 £ 0.065,  t, = —3.454 +0.132,
t5 = 2.353 + 0.548, (4.87)
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we then ran simulations for misaligned spins (see tdliflpand obtained a fit for arbitrary
initial spins and mass ratip= M, /M-

1
sl = s [l + laafa* + 2laslfar| ¢ cosa+

2 (Ja|cos 3 + [aalg? cosn) g + [e%¢%] . (4.89)
where
€| = (1:)74(12)2 (|a1|2 + |az|?q* + 2|ay||as|q? cosa) +
(%) (|a1| cos 3 + |as|q? cosy) +
V3 + tov + t312. (4.89)

These formulae give fairly accurate predictions for thelfs@n and kick of a merged
black hole and will be useful for studies of the evolution gbermassive black holes and
on statistical studies on the dynamics of compact objedieitse stellar systems, as well
as significant effect on the waveform and impact on paranesténation for gravitational
wave detectors.



Chapter 5

Gravitational Wave Detector Data
Analysis

Binary black-hole systems with spins aligned or anti-adigjio the orbital angular mo-
mentum, and which therefore do not exhibit precession &ffecovide the natural ground
to start detailed studies of the influence of strong-fieleh gffects on gravitational wave
observations of coalescing binaries. Furthermore, sustesys may be the preferred end-
state of the inspiral of generic supermassive binary blaalk- systems [201-203]. In
view of this, we have computed the inspiral and merger of gelaet of binary systems
of equal-mass black holes with spins parallel to the orlitgjular momentum but other-
wise arbitrary (see Tabk.2). Attention is particularly focused on the gravitationzve
emission so as to quantify how much spin effects contriboitthé signal-to-noise ratio
(SNR), to the horizon distances, and to the relative evaasri®r representative ranges
in masses and detectors, as well as for the formulation ofmargephenomenological
waveform for aligned spin binary black hole inspiral confagfions for detector pipeline
templates. As expected, the SNR increases with the projeofithe total black hole spin
in the direction of the orbital momentum. We find that equakdinaries with maximum
spin aligned with the orbital angular momentum are more titlaree times as loud” as
the corresponding binaries with anti-aligned spins, tlarsasponding to event rates up to
27 times larger. We also consider the waveform mismatch betweedifferent spinning
configurations and find that, within our numerical accurdiyaries with opposite spins
S1 = —S5 cannot be distinguished whereas binaries with $jir= S5 have clearly dis-
tinct gravitational-wave emissions. We derive a simplereggion for the energy radiated
in gravitational waves and find that the binaries always leffigienciesE,q /M 2 3.6%,
which can become as large Bs,q /M ~ 10% for maximally spinning binaries with spins
aligned with the orbital angular momentum.

Finally, in Section 5.2 | show the derivation of an analytical inspiral-merger-
ringdown gravitational waveforms from the black-hole iaa with non-precessing spins
presented in Tablé.2 By matching a post-Newtonian description of the inspioed tset
of numerical calculations performed in full general reldy | obtain a waveform family
with a conveniently small number of physical parametersesehwaveforms will allow
us to detect a larger parameter space of BH binary coalescémexplore various sci-

157
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entific questions related to GW astronomy, and could dramalftiimprove the expected
detection rates of GW detectors as | will show in the nextisact

The work presented in this chapter is presented in the p§®@rs208] and was done
in collaboration with Ajith Parameshwaran, Christian Reigy, Mark Hannam, Sascha
Husa, Yanbei Chen, Bernd Briigmann, Nils Dorband, Doreeridvlefank Ohme, Denis
Pollney, Lucia Santamaria, and Luciano Rezzolla.

5.1 Detectability

It has been a long-standing goal of the field of numericalixétg to provide results for
gravitational-wave data analysis in order to enhance tipatilities of current and fu-
ture gravitational wave detectors, especially regardimgabservation of compact binary
coalescence. With a series of breakthroughs in 2005 [19,3Z), this long-term goal
has become reality. However, further work is required taaltt understand the prac-
tical implications of numerical solutions of the full Eiest equations for gravitational-
wave data analysis. Some early studies suggest that tenf@aks that use numerical
information can increase the reach of detectors [14, 15, 20®the calibration of search
pipelines [210-212], and improve the estimation of paramsetsuch ag.g.,sky loca-
tion [213].

Here | present the use of gravitational waveforms from nigakrelativity (NR) cal-
culations for a number of sequences of equal-mass spintaul hole binaries whose
spins are aligned or anti-aligned with the orbital angulammentum as shown in Table
5.1, and consider the detectability of these binaries for tteuigd-based gravitational
wave-detectors as well as for the planned space-based btSAarometer.

Interest in this type of binary stems from the fact that theme strong physical in-
dications they represent preferred configurations in eaftairleast if the black holes are
supermassive. It has been shown, in fact, that when theyhimaurrounded by a massive
circumbinary disc, as the one expected by the merger of thaxigs, the dissipative dy-
namics of the matter produces a torque with the effect ohaliythe spins to the orbital
angular momentum [203]. In addition, the merger of binaviéh aligned spins yields
recoil velocities which are sufficiently small€., < 450 km /s [11, 155, 157]) to prevent
the final black hole from being expelled from the host galaklyis would then be com-
patible with the overwhelming astronomical evidence thassive black holes reside at
the centers of most galaxies.

The parameter space is therefore 2-dimensional (rathe6tdamensional) parametrized
by the projections:, as of the dimensionless spirg = S;/M? of the individual black
holes on to direction of the angular momentum (chosen as-thas). As a result, spins
that are aligned with the orbital angular momentum are ctaraed by positive values
of a1, as, while anti-aligned spins have negative values. Previtudies of this parame-
ter space [1,8,87,154, 155, 214], have considered thel naaotity and final spin of the
merger remnant, and have constructed phenomenologicalufas for these quantities
given the initial sping:; andas of the binary.

The focus of this Section is on the detectability of a givendadebinaries in the pa-



159 5.1 Detectability

rameter sub-space of (anti-) aligned spirss,, for each of these binaries and across a set
of different masses we calculate the signal-to-noise (&R) for the LIGO [215, 216],
enhanced LIGO (eLIGO) [217], advanced LIGO (AdLIGO) [14821Virgo [219], ad-
vanced Virgo (AdVirgo) [220], and LISA [221, 222] detectors

In this way | attempt to address the following questions:

() Which among the aligned-spin configurations is the “loutlastl which one is
the “quietest”?

(i) How large is the difference in signal-to-noise ratio betwéee loudest and the
quietest?

(i) How do these considerations depend on the detector usednabe of the
binary, and the number of harmonics?

(iv) Are there configurations whose waveforms are difficult tdingish and are
hence degenerate in the space of templates?

Overall, | find that equal-spinning, maximally anti-alighkinaries generally produce
the lowest SNR while equal-spinning, maximally alignedabies (the orbital 'hang-up’
case) produce the highest SNR. For any mass, the SNR can tbddswith a low-
order polynomial of the initial sping = p(a1,a2) and generally it increases with the
total dimensionless spin along the angular momentum dtrect = %(al + as) - L.
The possibility of describing the whole behaviour of the afavms from equal-mass,
aligned/antialigned binaries in terms of a single scalangty, namelya, provides a
certain amount of optimism that also more complex spin condiions can, ultimately,
be described in terms of only a few parameters.

| show the impact that higher-order contributions in the gavms with/ < 4 have
on the maximum SNR and show that for low masdésec [20,100] they contribute,
say for the LIGO detectorx: 2.5%, whereas for intermediate massks > 100 M,
they contributex 8%. | calculate the mismatch between the waveforms from differ
binaries across our spin-diagram and find that binariesgatba diagonak; = —as
(the u sequence) cannot be distinguished within our given nuralesiccuracy, whereas
configurations along the diagonal = as (thes sequence) are clearly differewf(Fig 5.7
and5.8 as well as Tabl®.4). Finally, | show the derivation of a simple expression for
the energy radiated in gravitational waves and find thatishimunded betweer 3.6%
and~ 10% for maximally spinning binaries with spins anti-alignedadigned with the
orbital angular momentum, respectively.

The plan of this section is as follows: in Sectidh1.1], | recall very briefly the
numerical set up and illustrate the properties of the indita used in the simulations.
Section p.1.9 is dedicated to the discussion of the gravitational-walseovables used
for the subsequent analysis, while Sectibri[g presents the results in terms of the SNR
and how this is influenced by higher-order modes. This Secileo contains a discus-
sion of the match between the waveforms from different l@saand an assessment of
the accuracy of our results. Sectidh].1Q, provides a brief discussion of the analytic
expressions we have found representing either the SNR anigy radiated in gravita-
tional waves. Finally, conclusions are summarized in ad6.1.13.
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Table 5.1: Binary sequences for which numerical simulations have beerted out, with various columns referring to the punctortal location
+x/M, the mass parameters; /M, the dimensionless sping, and the normalized ADM masZS/[ADM = M,,,,/M measured at

infinity. Finally, the last four columns contain the numaetigalues of the energy radiated during the simulation ugiegwo methods
described in the text and the corresponding errors betwesan,tas well as the error to the fitted values.

| to/M m /M my/ M 4 (pu )1 = —(Pas D)2 Mooy | ENE ELT e (%) fiter. (%) |
ro | 40000 0.3997 0.3998 —0.600  0.600 (0.002103,—0.112457) 0.9880 | 0.0366 0.0356 2.8 1.6
9 4.0000 0.3997 0.4645 —0.300 0.600 (0.002024,—0.111106)  0.9878 | 0.0407 0.0394 3.3 0.6
T4 4.0000 0.3998 0.4825 0.000 0.600  (0.001958, 0.001958) 0.9876 | 0.0459 0.0445 3.1 1.9
re | 4.0000 03999 0.4645  0.300  0.600 (0.001901,—0.108648) 0.9876 | 0.0523 0.0504 3.8 2.2
s_g | 5.0000 0.3000 0.3000 —0.800 —0.800 (0.001300,—0.101736) 0.9894 | 0.0240 0.0231 3.8 3.0
S0 4.0000 0.4824 0.4824 0.000 0.000  (0.002088,—0.112349)  0.9877 | 0.0360 0.0354 1.7 0.2
sy | 4.0000 04746 04746 0.200  0.200 (0.001994, —0.110624) 0.9877 | 0.0421 0.0410 2.7 1.7
S4 4.0000 0.4494 0.4494 0.400 0.400  (0.001917,—0.109022)  0.9876 | 0.0499 0.0480 4.0 2.5
s | 4.0000 0.4000 0.4000  0.600  0.600 (0.001860,—0.107537) 0.9876 | 0.0609 0.0590 3.2 0.2
S8 4.0000 0.4000 0.4000 0.800 0.800 (0.001816,—0.106162)  0.9877 | 0.0740 0.0744 0.5 2.2
to 4.0000 0.3995 0.3995 —0.600 —0.600 (—0.002595, 0.118379) 0.9886 | 0.0249 0.0243 2.5 1.1
i | 40000 03996 04641 —0.600 —0.300 (—0.002431, 0.116748) 0.9883 | 0.0271 0.0264 2.7 1.8
to 4.0000 0.3997 0.4822 —0.600 0.000 (—0.002298, 0.115219) 0.9881 | 0.0295 0.0289 2.1 2.2
ty | 4.0000 0.3998 0.4642 —0.600  0.300 (—0.002189, 0.113790) 0.9880 | 0.0326 0.0317 2.8 1.8
us | 40000 04745 04745 —0.200  0.200 (0.002000, —0.112361) 0.9878 | 0.0361 0.0354 2.0 0.2
Uy 4.0000 0.4492 0.4494 —0.400 0.400 (1 0.002095,—0.112398) 0.9879 | 0.0363 0.0355 2.3 0.7
us | 4.0000 0.2099 0.2099 —0.800  0.800 (0.002114,—0.112539) 0.9883 | 0.0374 0.0363 3.0 3.7
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5.1.1 Numerical Setup and Initial Data

The numerical simulations have been carried out usingQBATI E code, a three-
dimensional finite-differencing code using t@act us Computational Toolkit [91] and
the Car pet [93] adaptive mesh-refinement driver. The code implemérgs‘inoving-

punctures” technique to represent dynamical black holésing [20, 59] (see Section

[2.4.4).

In the results presented below we have used 9 levels of mésbmeent with a fine-
grid resolution ofAz/M = 0.02 and fourth-order finite differencing. The wave-zone
grid has a resolution ohz/M = 0.128 and extends from = 24 M to r = 180 M, in
which our wave extraction is carried out. The outer (codysgsd extends to a spatial
position which is819.2 M in each coordinate direction. Note that, because these are
higher resolution and longer numerical inspiral than thgusaces presented in Table
4.2 we have much higher accuracy and more overlap with the pesttdhian curves.
Because the black holes spins are all directed along-#ds of our Cartesian grids, it
is possible to use a reflection symmetry condition across the) plane as described in
Section R.6.5.

The initial data are constructed applying the “puncture’thod [49, 51, 223, 224] as
described in Section2[4.4. We have considered four different sequences labelled as
‘7, s, *t” , and“u” along straight lines in théu;, as) parameter space, also referred
to as the “spin diagram”. As shown in Fi§.1, these sequences cover the most important
portions of the space of parameters, which, is symmetrib vaspect to the;, = ao

diagonal.

Similar sequences have also been considered in [1, 8, 87,35but have here been
recalculated both using a higher resolution and with impdowitial orbital parameters.
Post-Newtonian (PN) evolutions following the scheme oetli in [88], which provides a
straightforward prescription for initial-data parameterith small initial eccentricity, and
which can be interpreted as part of the process of matchingumerical calculations to
the inspiral described by the PN approximations were usdtk fiee parameters to be
chosen for the puncture initial data are therefore: the fpwaaoordinate location€’;,
the puncture bare mass parameters the linear momenta;, and the individual spins
S;. The initial parameters for all of the binaries considerezl @llected in the left part
of Table5.1 The initial separations are fixed & = 8 M, whereM is the total initial
black hole mass, chosen &6 = 1 (note that the initial ADM mass of the spacetime is not
exactly 1 due to the binding energy of the black holes), while the iintlial asymptotic
initial black hole masses are therefar§ = 1/2. The only exception is for the binary
s_g, for which D = 10 M, because the plunge happens too quickly to fit in a comparable
waveform for a comparable number of wave cycles.

5.1.2 NR waveforms

The analysis carried hereafter will be made in terms of gamggriant metric pertur-
bations on a Schwarzschild background, rather than via thenhan-Penrose curvature
scalar¥, (both methods are described in Secti@6[3d. While the two prescriptions
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Figure 5.1: Schematic representation in the, a2) plane, also referred to as the “spin
diagram”, of the initial data collected in Tabfel These sequences cover
most important portions of the space of parameters whigmsigetric with
respect to the; = a, diagonal.
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yield estimates that are in very good agreement with eaddr athd with differences be-
low 2%, we have found that the results obtained using gauge-amvaquantities have a
smaller numerical error, and are thus preferable.

More specifically, we compute the gravitational-wave amdlsiashjm and hy, in
terms of the even and odd master functigl}s, and@, via the relations [182]

t

hem(8) = Ry, (t) — ihy, () = Q) (1) — i / dt'Qp, (1), (5.1)
where the gauge-invariant perturbations are typicallyaeted at a radius of, = 1600/
(see Sectiond.1.9 for a discussion of the accuracy of our measurements).

As mentioned before, all our binaries [butg] have initial separations db = 8.0M

[D = 10.0M], which, in the parameter space that we have considereds leaa maxi-
mum initial frequency of the numerical waveforms, thabijs; = 0.084/M. Depending
therefore on the mask/, such an initial frequency can be greater than the lowenoffut-
frequency of the detector for a given source at an arbitréstadce. Because for most
masses, a “real” waveform will be “longer” than the one cotegdihere, we need to ac-
count for the missing frequency band between the lower ffural the initial frequency
of the wave. This can be accomplished by attaching to the N\Rws PN part of the
wave and will be discussed in the next Section.

The values of the initial frequencies and of the associatieihmim massed/,,,;, for
each of the detectors considered are reported in TmBle

5.1.3 Matching PN and NR waveform amplitudes

The existence of a cut-off mass set by the initial frequerfah® NR simulations would
clearly restrict the validity of our considerations to lkangasses only. To counter this and
thus include also binaries with smaller masses, we accouiié early inspiral phase by
describing it via PN approximations. To produce the PN wawat, and the PN energy
that we are using directly in SectioB.[L.1], we have used the spinning TaylorT1 approx-
imant used in Hannam et al. [225], and which is based on theXpkessions described
in [172,226—-232]. The choice of TaylorT1 is motivated byttfat, that in [225] it is
found to be more robust in the spinning case than the Taylapptoximant, which was
previously found to yield excellent results in the nonspigncase [233] (see [233] for a
comparison of different techniques to obtain the graatsl-wave phase information for
quasi-circular inspiral). These waveforms are 3.5 PN ateun the nonspinning phase,
and 2.5 PN accurate in the spin-dependent terms enterirnghtteng. The gravitational-
wave amplitudes, on the other hand, have been computeddaugdo ref. [234] to the
highest PN order that is currently known for each of the sphEharmonic modes we
use.

A phase-coherent construction of hybrid PN-NR wavefornmatiser delicate, and has
not yet been achieved for the higher spherical harmonic sageuse here. However, for
the present purpose of computing the SNR and the radiatediesesuch a construction
in the time domain is not necessary and all of the relevankwan be done more simply
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Table 5.2: Initial instantaneous frequencidd w;,; and associated minimum masses
M i Of the NR waveforms for the different models and for each ciete
according to the corresponding lower cut-off frequeniog.(at 30 Hz for
Virgo, at40 Hz for eLIGO, at10 Hz for AdLIGO/AdVirgo, and atl0—* Hz
for LISA). All the values for the masses are in units of solasses.

Mwini Mmin Mmin Mmin Mmin

Virgo eLIGO AdLIGO/AdVirgo LISA
ro | 0.080 | 86.2  64.6 258.5 2.58 x 107
ro | 0.078 | 84.0  63.0 252.0 2.52 x 107
ry | 0.077 | 829  62.2 248.8 2.49 x 107
r¢ | 0.076 | 81.8  61.4 245.5 2.46 x 107
s_g | 0.060 | 64.6  48.4 193.8 1.93 x 107
sp | 0.080 | 86.2  64.6 258.5 2.58 x 107
sy | 0.078 | 84.0  63.0 252.0 2.52 x 107
s4 | 0.076 | 81.8  61.4 245.5 2.46 x 107
s¢ | 0.075 | 80.8  60.6 242.3 2.42 x 107
sg | 0.073 | 786  59.0 235.8 2.36 x 107
to 0.084 | 90.5  67.8 2714 2.71 x 107
t 0.083 | 89.4  67.0 268.2 2.68 x 107
to 0.082 | 88.3  66.2 264.9 2.65 x 107
ts 0.081 | 87.2 654 261.7 2.62 x 107
upg | 0.080 | 86.2  64.6 258.5 2.58 x 107
ug | 0.080 | 86.2  64.6 258.5 2.58 x 107
ug | 0.080 | 86.2  64.6 258.5 2.58 x 107
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Figure 5.2: Noise strain for the Advanced LIGO and Virgo detectors aredRburier-
transformed amplitude of the PN and NR waveforndat 0,¢ = 0 for
a total mass\/ = 200 M, at a distancel = 100 Mpc for the maximally
spinning modeks. The glueing frequency is gt = 27.14 Hz.

in the frequency domain. In practice, we Fourier transfone PN and NR waveforms
and “glue” them together at a suitable “glueing” frequengy,.. Since the SNR depends
only on the amplitude of the waveform, [ e.9)], it is not necessary to match the PN-
waveform in the phase. This simplifies the process of waweforatching and basically
reduces to a simple check of the amplitude matching to agdheserror of the mismatch.
Without any parameter adjustment, the PN-waveform ang®#gumatch well with the
inspiral part of the NR-waveforms, and result in an errorahiis usually=~ 1.5% and in
the worst case- 4.0% for the binary configurationy. It is important to pay attention in
the time-domain analysis in order to limit the noise artifaio the Fourier-transformed
amplitudes, is the use of a windowing functiomd.,a hyperbolic tangent) to smoothly
blend the waveform to zero before the initial burst of spusioadiation, as well as after
the ringdown, in order to limit spurious oscillations in theurier-transformed waveform.
A representative example is shown in Fig2, where the noise strain for the Virgo and
Advanced LIGO detectors is reported, together with the ieodransformed amplitude
of the PN and NR waveform for the maximally spinning modgl The waveform is
assumed to be observeddat 0, ¢ = 0 for atotal mass/ = 200 M, and from a distance
d = 100 Mpc. The glueing frequency in this case isfat.c = wglue/(27) = 27.14 Hz.

Since eacl{, m mode of the gravitational-wave field will have a differenitiad fre-
guency, we need to make sure that they are all properly takeraccount when deter-
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mining the glueing frequency, so that

Wglue > I?ax(wini)ém . (52)
In practice, the initial frequency of our highest mode= 4,m = 4, has an initial
frequency(wini )44 = 2(wini)22. AS a result, we select the glueing frequency according to
the binary configuration with the largest initial frequenttye binaryt,, and takevg,e =
2(wini)22 = 0.168/M. We also measure how sensitive this choice is, by consiglerin
how the results are affected when choosing insteagdk = Aw, with Aw < wglye. FOr
Aw = 0.01/M we find a maximal difference in the computed SNR~of2.0% over
all configurations and all masses. Such a difference afeesgimlly the maximum and
averaged SNRs (see Sectidn].g for a discussion on these two different measures of
the SNR). A change ahw in wy,e affects only marginally the relative difference between
SNRs computed by including modes ugte: 2 and? = 4, and in this case the differences
are~ 2.0%. Overall, the uncertainties introduced by the choicegf. are much smaller
than the typical error at which we report the SNRs.

5.1.4 Radiated Energy

Since the total energy must be conserved, we can use théedeiaergy as an important
tool to verify the accuracy of the gravitational-wave arae and thus the overall pre-
cision of our calculations. More specifically, because #timightforward to determine
the initial and the final total mass, it is also straightforsvéo compare the difference in
the two with the radiated energy. In practice, we computeirthial mass of the system

as M, = MADM, while the final mass of the merger remnaut,, is deduced from the

properties of the apparent horizon within the isolated#wor formalism as discussed in
Section R.6.4. The radiated energy is then given by the difference

Erad MADM — M (53)

and should be equal to the energy that has been radiatedythigravitational waves
during the simulation [182]

B _ Z / aQ; |
Eraa T 327 dt

For all binaries the difference betweéh, 4 andE]gL;’Jr is between~ 0.5% and~ 4.0%
and a detailed comparison of the numerical values is reppantdable5.1 In Section
[5.1.17 I will discuss an analytic fit to the computed data that pded a measure of the
amount of mass radiated during the inspiral, merger andlawg as a function of the
initial spins.

+ |sz\2> . (5.4)
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5.1.5 SNR, Horizon Distances and Event Rates

Following ref. [235], we define the SNR, for matched-filtering searches as

S\’ < |h(f)]?
2 = — g
P= <N>matched 4~/0 Sh(f) df (55)

whereh(f) is the Fourier transform of the time domain gravitationave signalh(t),
defined in the continuum as

h(f) = / h h(t)e~# i/t qt (5.6)

andSy(f) is the noise power spectral density for a given detectore&fegr we will con-
sider theS),(f) for the ground-based detectors LIGO, enhanced LIGO, agxbhtGO
and Virgo, as well as the space-bound LISA interferometéie dssociated noise power
spectral densities are reported in Apperdlis.

Since the SNRY.5) depends on the angle from the source to the detector, iefsilus
to introduce the angle-averaged SKR), which can be computed after decomposing the
gravitational-wave signal in terms of spherical harmonades. Using the orthonormality
of the spin-weighted spherical harmonic basis,,, the“angle-averaged”SNR

2

— < 2> _ 1 /dQ/df‘Zém ﬁfm(f) 72YV€m(Q) (5 7)
Pavg = \P ) = s Sh(f) s .
can be written as a sum of integrals of the absolute squarésedfourier-transformed
modeshy,, (f)
1 |}~Lém(f)|2
e 4= 5.8
Peve W%/f Su(f) (5.8)

For each binary, distance and mass, we have calculated Hmtmaximum” SNR p.x

for an optimally oriented detectaige., the SNR for a detector oriented such that it mea-
sures only thet polarization of the gravitational-wave signal, and theraged SNR.
Here the mass is always meant to berddshiftedtotal mass(1 + z) Mgource, Wherez is

the redshift and\/y,..cc iS the mass at the source. For sources at small distaneekgss
than100 Mpc, thenz < 0.024 and hencéll ~ M, t0 Within a few percent. Identical
results would have been obtained if we had considereckthelarization.

If the gravitational-wave signal is modeled through the d@nt/ = 2 = m mode
only (or in our case via a superpositién= 2 = +m), the maximum SNR can be de-
duced from the average SNR after exploiting the properti#issospin-weighted spherical
harmonic_,Y55 and_5Y5 5, namely

Pmax — \/5p32wg(£ =2,m= 2) (5.9)

- \/gpgwg(g =2,m = +2), (5.10)
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but such a relation is no longer true when including modeé Wit> 2. The relation
between the maximum and the averaged value of the SNR cambewlgtermined numer-
ically.

When computing the SNR, a reference distance needs to be fixd¢kis case, | set
the reference distance to llg = 100 Mpc. The results of the SNR at, across the
spin diagram can then be recast in terms offarizon distance”, namely the distance at
which a given binary system with redshifted magshas an SNR equal to a threshold for
detectability and which we chose to pe= 8, as customary for ground-based detectors.
The horizon distance is then simply defined as

dy = d, (WJT:CZP» Mpe. (5.11)

The quantitydy is equivalent to the SNR but has the advantage to providesast for
detectors not operating at large SNRs, a estimate of thedserin the relative event rate

R as
dg  \?
R~ , (5.12)
dH,azfl

wheredpy ,——1 is the horizon distance of the configuration with lowest SE&pnging
to the extrapolated case= —1. Expression§.12) is valid as an equality only for small
horizon distances, namely those for which the redshift gdigible. At large redshifts the
observed masses would differ considerably from the mas$sks source. In other words,
at large redshifts the horizon distances would be diffenehbnly because of the spin, but
also because the masses at the sources would be intripgidédirent. This impacts the
deduced event rate as defined ml1@), which considers only the contributions coming
from the spin. Hence, for large redshifts the event fatdefined here serves only as
a lower limit for masses larger than the optimal one and aspgerubound for masses
smaller than the optimal.

As a concrete example, let us assume that we have calcuthedubtizon distance for
a binary witha = —1 which, as can be deduced from Fig4, will lead to the smallest
SNR for a given detector. We also assume that this binary maass which is smaller
than the optimal one. Let us now consider a binary with theesarass at the detector but
with ¢ > —1; this binary will clearly lead to a larger SNR but becauserttasses at the
detector are the same, the mass of the binary avith—1 will be (because of the redshift)
smaller at the source. As a result, its horizon distancebeilbverestimated, and hence
the event rate coming fronb(12 only an upper bound. A similar argument for masses
larger than the optimal one would instead lead to the coimiuhat the event rat& is
only a lower bound.

5.1.6 Results

The results of the analysis discussed above are summarnzEwd).i5.3 which shows
the averaged and maximum horizon distadge= dy (a, M) for some of the detectors
considered. As mentioned above, the horizon distance feasdmnputed at a reference
SNR p = 8.0, and is parametrized in terms of the total mass of the systarmsqjar
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Figure 5.3: Averaged and maximum horizon distantge = dy(a, M) for the LIGO
detector (top left panel), for the Virgo detector (top rigdanel), and for
the advanced versions of both detectors (bottom left artdt pgnels, re-
spectively). The horizon distance has been computed ateerefe SNR
p = 8.0.
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Figure 5.4: Maximum SNRp..x = p(a, M) for the LIGO detector for a given set of
masses at a distande= 100 Mpc. Note that the growth of,,.x with a
is very well described with a low-order polynomial which i§4ih order
for the optimal masscf. discussion in Sect.1.10Q. Note also that the
dependence on becomes stronger for massks > 200 M, for which
the NR-part of the waveform and hence the plunge and ringduvase
dominate. In these cases, the SNR is more then doubled betwee—1
anda = +1.

masses) and of the average dimensionless sgias projected along the orbital angular
momentumL

1 - 1

slar+az) - L=c(ai+as)-e., (5.13)

where L, = L/|L|, and the orbital plane has been chosen to coincide witH{:they)

plane of our Cartesian coordinate system. The top left pahé&lig. 5.3 refers to the
LIGO detector, the top right panel to the Virgo detector, letihe lower left and right
panels refer to the advanced versions of both detectorsecteely.

a =

These panels deserve some comments:

e The maximum SNR is always larger than the average one buiffeeetice between
the two is not constant, changing both with the total dimemisiss spirm and with
the total massg\/.

e For any fixed value ofi, the horizon distance (and hence the SNR) grows steeply
to a maximum mass and then rapidly decreases to very smaésaf~ O(1).

e For any value ofz, the maximum horizon distance/SNR also marks the “optimal
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1e+08

SUH)

Figure 5.5: Averaged and maximum SNR= p(a, M) for the planned LISA mission
and for sources at = 6.4 Gpc (z = 1).

mass” for the binany/,, the mass of the binary whose inspiral and merger is op-
timally tuned with the given detector and hence can be seen fiurther away. The
differences between the maximum and average SNR are lamghstneighborhood

of the optimal mass.

e The configuration with spins parallel and aligned to thetatl@ingular momentum
are generically “louder” than those with spins parallel datialigned with the or-
bital angular momentum, with the binaries having- +1 being the “loudest” and
“quietest”, respectively.

e In the cases of the LIGO and advanced Virgo detectors thedmwuistance is es-
sentially zero at cut-off masses which aré)00 M, and~ 3000 My, respectively.

e For any fixed value of the total mass, the SNR grows witind, as we will discuss
later on, this growth is very well described with a polynohuoé 4th order. This
is shown more clearly in Figh.4, which reports the maximum SNR,.x for the
LIGO detector and for a given set of masses at a distdred 00 Mpc. The growth
of pmax With a becomes steeper for massds> 200 M, for which the NR-part of
the waveform and hence the plunge and ringdown phase damsirlatthese cases,
the SNR is more then doubled betwees —1 anda = +1.

e When going from the present LIGO/Virgo detectors to theiveamted versions,
the average horizon distances go fren600/800 Mpc to ~ 10%/1.2 x 10* Mpc,
thus with an observationafolumeof the Universe that is increased by a factor of
~ 5000/3000, respectively.

Figure5.5shows similar information but for the planned LISA missi&ince the horizon
distance can exceed the whole Hubble horizon, the figuratefite averaged and maxi-
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mum SNRp = p(a, M) for sources atl = 6.4 Gpc (z = 1). Many of the considerations
made above hold also for the LISA detector, and for suffityehigh and aligned spins
(a > 0.8), the SNR is> O(10) with binaries having masses few x 103 M.

The most salient information of Fig$.3 and 5.5 is collected in Tables.3 which
reports the properties of the “optimal” aligned binariestfte different detectors. More
specifically, the Table reports in its different rows theimyat total aligned spiru, the
optimal total mass in solar masses, the optimal maximuand average.,, SNRs, the
optimal horizon distancé; (expressed inMpc and with 7 ~! being the Hubble radius),
the optimal relative event ratg, and the glueing frequencf,.. for the optimal binary.
The masses have been sampled with an accurazy 81, for the ground-based detectors
and of2.5 x 10* M, for LISA.

Table 5.3: Properties of the “optimal” aligned binaries for the diffat detectors.
Shown in the different rows are the optimal total alignechspithe opti-
mal total mass in solar masses, the optimal maxinpup and averagpay,
SNRs, the optimal horizon distandg (expressed idMpc and whereH —!
is the Hubble radius), the lower bound for the optimal regvent rate?,
and the glueing frequengi.. for the optimal binary. The masses have been
sampled with an accuracy af5 M, for the ground-based detectors and of
2.5 x 10* M, for LISA.

LIGO | eLIGO | AdLIGO | Virgo | AdVirgo LISA
a 0.8 0.8 08| 0.8 0.8 0.8
Mopt (Mg) | 197 180 290 | 395 390 | 5.35 x 106
Pmax 87 175 1667 | 118 1591 | 2.91 x 106
Pave 52 104 991 70 944 | 1.77 x 10°
dg (Mpc) 1091 | 2190 | >cH™' | 1476 | > cH ™! > cH™!
R 18 17 16 16 17 26
faiwe (Hz) | 27.48 | 30.51 18.71 | 13.74 13.91 | 1.0 x 1073

5.1.7 Influence of higher/-modes

It is important to at least consider the impact that highveleo modes have on the SNR
of equal-mass aligned binaries. Some representative dg&arapthis impact is shown in
Fig. 5.6. The left panel of this figure, in particular shows the maxim8NR p,,.., as a
function of the mass for the highly spinning modgland for the present detectors LIGO
and Virgo. Different lines refer to the SNRs computed usinty dhe ¢ = 2 multipoles
(continuous line), or up to thé = 4 multipoles (dashed line). The contribution of the
higher modes is most important near the optimal mdgs{ 200 M, for LIGO and
M ~ 400 M, for Virgo) but this is also non-negligible for larger massesere it can
produce an increase ef 8% in SNR in a detector such as Virgo.

The right panel of Fig5.6, shows the ratio between maximum and averaged SNR as
a function of the total projected spinfor a binary of M = 200 M, (5.35 x 10° M,,)
and the LIGO (LISA) detector. As mentioned in Se&tl.§ this ratio is not expressed
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Figure 5.6: Left panel: maximum SNRp,,.x as a function of the mass for the highly
spinning modekg and for the present detectors LIGO and Virgo. Different
lines refer to the SNRs computed using only the 2 multipoles (contin-
uous line), or up to thé = 4 multipoles (dashed line)Right panel:ratio
between maximum and averaged SNRBs a function of the sping, = a,
for M = 200 M, (M = 3.53 x 10° M) by including modes up t6 = 2
and? = 4 for LIGO (LISA). In contrast to the case= 2, the/ = 4-curve
is not constant but depends on the initial spinsas
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by a simple algebraic expression [ Eg5.9)], but needs to be determined numerically.
Interestingly, this ratio is not constant but increases-b¥0% for larger total projected
spins, underlining the importance of higher-order contidns as the initial spin increase.

5.1.8 Match between different models

An extremely useful quantity to analyze is the match betwberamplitudes of the wave-
forms from two different binaries. This will quantify thefféirences in the gravitational-
wave signal relative to some reference models. The matetelesttwo waveformé; (¢)
andhs(t) (or a template and a waveform) can be calculated via the wesigdtalar prod-
uct in frequency space between two given waveforms

(h|hs) = AR /O h df%ﬁ%m, (5.14)

whereh, (f) is the power spectral density bf (), the asterisk indicates a complex con-
jugate, andS,,(f) is the noise power spectral density of a given detector. Tedap is
then given by the normalized scalar product

(h1|h2)

V/(halhy) (halha)

Two parameters must be taken into account when computingviigap. The first is
the “time of arrival’t, corresponding to an offset in the Fourier-transform of tigaa
exp [iw(t — ta)]. The second is the “initial phas& of the orbital motion when it enters
the detector band.

O[h1, ho] =

(5.15)

For both of these parameters the overlap should be maximiteste are two possible
ways of doing this. The first approach involves thestmatch, which gives an upper
bound by maximizing over both of the phases of each waveform

Myest = max max max{O|hy, ha]} . (5.16)
tA (o3} (o2

The second way involves thaminimaxmatch, and is obtained by maximizing over the

phase of one waveform but minimizing over the phase of theroth

M ninimax = max min max{QOlhq, ho]}, (5.17)
A 2 Dy
and thus represents a “worst-case” scenario since it givesrimatches although one is
maximizing over the template phase. More details on the miasition procedure can be
found in [236, 237]. Note that all the matches computed Hteneeefer to the numerical-
relativity part of the waveform only.

A sensible method to evaluate expressidhd®) and 6.17) uses the binary, the
nonspinning binary, as a reference and computes the oweithghe binaries at repre-
sentative locations in the spin diagram, at the cornersdor sg, so — us, sg — s_g, Of
along the main diagonas,_g — sg. In this way we assess whether the waveform produced
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Figure 5.7: Best and minmax match as a function of mass for a waveformagung
only the/ = 2,m = 2 contribution and referring to the LIGO detector.
Very similar behaviors can be shown also for the other detect

by a nonspinning binary can be used to detect also spinnimagyibs and how much the
overlap is decreased in this case.

This is shown in Fig5.7, which reports the best and minmax matches as a function
of mass for a waveform containing only tlie= 2, m = 2 contribution for the LIGO
detector. Different lines show the match computed betwgesnd other representative
binaries. This shows the remarkable similarity betweemntheeforms of binaries having
a zero total spin. This is shown by thg — ug match, which is essentially very close to
1 for all the masses considered (Tabld). This result extends to all the other measured
guantities, such as the radiated energy or angular momenthm equivalence between
nonspinning binaries and binaries with equal and oppopitesias been exploited in the
derivation of expressions for the final spin presented inpg@rd4]. The results of Fig5.7
and Table5.4 are therefore a simple example, although probably not tie mossible
one, of a well defined region of the space of initial configiora which can be mapped
to an almost degenerate region (essentially to a single)pioithe space of templates.
This represents a serious obstacle towards a proper estohghysical parameters of the
binaries that may be removed, at least in part, only if theef@wm is measured with a
sufficiently high SNR.

An equally interesting result, presented in Fig7, is that the overlap is also very
high between the nonspinning binary and the binary with kqud antialigned spins,
so — s_g; also in this case the best matchhg,,.; = 0.9 for the range of masses that is

~

relevant here. Slightly smaller and decreasing with ingirepmasses are the best matches
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Figure 5.8: Best match as a function of the total projected spfior a waveform con-
taining only the! = 2, m = 2 contribution. The top/lower panels refers to
binary with a total mass200,/400 M) which are close to the optimal ones
for the LIGO/Virgo or advanced detectors, respectivelybdth panels the
dotted line shows the minimum best matéH(5) needed for a detection.
While the data have been computed for the LIGO detector, sanjlar
behaviors can be shown also for the other detectors.

computed when comparing the nonspinning binary with tharyinf parallel and aligned
spins, so thaitV,.; ~ 0.8, but only for very large masses. The waveforms appear glearl
different (with My,.s¢ < 0.6) only when comparing the binaries along the main diagonal
of the spin diagram, foggs — s_g. Even in this rather extreme case the differences tend to
become smaller for smaller masses. Overall, this resukings that even simple wave-
forms, such as those relative to nonspinning binaries,beileffective enough to provide

a detection for most configurations of equal-mass and aigméialigned binaries.

A different way to assess “how different” the waveforms aceoas all of the equal-
mass aligned/antialigned spins configurations consideeee is summarized in Fi§.8,
which shows the best match as a function of the total prajesfen a for waveforms
containing only the = 2, m = 2 contribution and referring to the LIGO detector. The
top panel, in particular, refers to binary with a total mak8a9 M, (close to the optimal
mass for the LIGO/Virgo detectors), while the bottom paeéérs to a binary with mass
400 M, (close to the optimal mass for the advanced LIGO/Virgo detsy, as shown in
Table5.4. Besides the smooth behaviour.bf,,.s; across all the values af considered,
it is clear that the waveform from a nonspinning binary caexteemely useful across the
wholespin diagram and yield very large overlaps even for binagiigls very high spins.
In both panels, in fact, the dotted line shows the minimum begtch (My,e; = 0.965)
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needed for a detection [238]. This result is reassuringghtlof the fact that most of
the searches in the detector data are made using phenomieableaveforms based on
nonspinning binaries. This result is exploited for the téatg development in Section
[5.2.

For completeness, the results presented indziffas well as those in Fi%.9) are also
reported in Tablé.4, where the columns showdy,est aNd M pinmax @and for waveforms
computed either using only the= 2,m = 2 contribution (third and fourth columns),
only the/ = 3, m = 2 contribution (fifth and sixth columns), or all contribut®mp to
¢ = 4 (last two columns). The matches among the high-order medgs(so)¢—3,m=2 —
(ug)e=3,m=2, 1S higher than those of the lower ones and remains true emehigher
modes beyond = 3, m = 2. This indicates that in order to do high-precision paramete
estimation by including higher modes it is also importastt these modes are accurately
resolved, so that they can be clearly distinguished fromamagher.

We generally expect the match to degrade when the wavefaensoanputed by in-
cluding higher-order modes (up fo= 4) and that this degradation will become larger
with increasing inclinatiorf. The most notable example is for the degeneracy along the
diagonala; = —as, which should be broken by the inclusion of higher-order esd-or
this reason we have computed the sky-averaged match of evaveincluding modes up
to ¢ = 4 (i.e., the “complete” waveforms) and the corresponding matchegeported
in the last two columns of Table.4 We measure a marked decreased in the minmax
match, but a much smaller decrease in the best match. Althougresolution should be
marginally enough for us to detect such a difference in thet bwatch, we also believe
that a much higher accuracy is required to determine this @gttainty. The matches with
complete waveforms along other directionsy.,so — sg Or so — s_g, do not decrease and
this is due to the very large mismatch we already have witlf the2 = m waveforms.

Figs5.7and5.8 show data computed for the LIGO detector only, however, gary
ilar behaviors can be shown also for the other detectors.

5.1.9 Accuracy of NR waveform amplitudes

A reasonable concern that can be raised when looking thehigiymatches between the
waveforms in thei-sequence is that these are the result of insufficient résolun other
words, the waveforms may appear similar simply becauseammiution is not sufficient
to pick-up the differences. To address this concern we hawgated the overlap among
the waveforms obtained at three different resolutions and fepresentative binary with
nonzero sping;,. Clearly, a low match in this case would be an indication thatresults
are very sensitive to the numerical resolution.

The results of this validation are presented in FH@ and are reported in the last
eight rows of Tablé.4. Shown with different lines in Figs.9 are the matches obtained
when comparing the numerical waveforms of the binayycomputed at low resolution
(Az/M = 0.024) and medium resolutionXz/M = 0.020, as well as at a medium
and high resolution&z/M = 0.018). The matches are computed considering only the
¢ = 2,m = 2 mode and for the LIGO detector, but very similar behaviors loa shown
also for higher modes or for the other detectors.
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Table 5.4: Best and minmax matches as computed for the LIGO detectdvifiaries with different spins in the spin diagram. Differenlumns
show Myest and M minmax fOr waveforms computed either using only the= 2, m = 2 contribution (third and fourth columns),
only the? = 3,m = 2 contribution (fifth and sixth columns), or the sky-averagedtributions of all modes up t6 = 4 (last two
columns). Finally the last eight rows show the matches & it resolutionsie., Ax/M = 0.024,0.020,0.018 or low, medium and
high, respectively) for the binany,.

A{/MQ Mbest Mminma.x Mbest Mminmax Mbest Mminmax
(=2m=2|0=2m=2 =3m=2|{=3m=2|uptol =4 | uptol =4
S0 — S8 100 0.87182 0.86914 0.87802 0.85061 0.86337 0.83272
200 0.79987 0.79642 0.82533 0.80236 0.80070 0.75679
300 0.74394 0.74026 0.82570 0.78819 0.74785 0.71139
400 0.71981 0.71568 0.84074 0.81285 0.72345 0.69019
S0 — ug 100 0.99926 0.99914 0.99497 0.97411 0.99673 0.95443
200 0.99928 0.99906 0.99372 0.95193 0.99483 0.95919
300 0.99923 0.99870 0.99189 0.93888 0.99251 0.96105
400 0.99919 0.99822 0.99147 0.93493 0.99110 0.96054
S0 — S—8 100 0.93942 0.93907 0.95717 0.94843 0.93695 0.92143
200 0.90746 0.90536 0.95647 0.94521 0.89646 0.88041
300 0.89491 0.89197 0.95015 0.93814 0.87303 0.84960
400 0.89369 0.89065 0.94806 0.93550 0.85492 0.82103
S_g — S8 100 0.78948 0.78493 0.87041 0.85222 0.78310 0.74895
200 0.63309 0.62703 0.90722 0.88543 0.63456 0.59426
300 0.56934 0.56008 0.90322 0.88869 0.56941 0.52170
400 0.54235 0.53960 0.91199 0.89848 0.55470 0.49338
S_g — ug 100 0.94250 0.94187 0.96299 0.94669 0.93897 0.89017
200 0.91444 0.91229 0.96316 0.93068 0.90315 0.85958
300 0.90188 0.89885 0.95486 0.91256 0.87846 0.83428
400 0.89772 0.89492 0.95132 0.90583 0.85870 0.80907
S8 — Uug 100 0.87127 0.86817 0.87656 0.84229 0.85866 0.80969
200 0.79750 0.79477 0.83582 0.81476 0.79074 0.73526
300 0.74063 0.73884 0.83897 0.80378 0.73616 0.68774
400 0.71798 0.71343 0.84955 0.81925 0.71203 0.66611
) 100 0.99979 0.99970 0.99495 0.98812 0.99855 0.99463
(0.024, 0.020) 200 0.99963 0.99929 0.99133 0.97100 0.99633 0.98800
300 0.99943 0.99894 0.98752 0.95775 0.99379 0.98152
400 0.99924 0.99868 0.98630 0.95317 0.99209 0.97683
) 100 0.99990 0.99989 0.99873 0.99299 0.99881 0.99639
(0.020,0.018) 200 0.99980 0.99970 0.99806 0.98074 0.99705 0.98952
300 0.99956 0.99924 0.99707 0.97238 0.99497 0.98070
400 0.99935 0.99866 0.99666 0.97017 0.99320 0.97429
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Figure 5.9: As in Fig. 5.8 but now different lines represent the matches obtained when
comparing the numerical waveforms of the binagycomputed at different
resolutions. The matches are computed for the LIGO detebtdrvery
similar behaviors can be shown also for the other detectors.
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The results reported in Fi§.9and in Tableéb.4show thatMest minmax[Az1, Axg] >
Mpest, minmax |1, h2], thus that the differences we measure in the overlaps amangit-
ferent waveforms, andhs are always larger than the differences we are able to measure
at two different resolutiong\z; and Az,. In other words, the differences in the wave-
forms across the spin diagram are always larger than our meetherrors, even along the
degeneratei-sequence (of course, as we have a convergent numerical tedenatch
between medium and low resolution is worse than the matahdsgt medium and high
resolution). As long as the dominafit= 2, m = 2 mode is considered, the differences
in the matches are well within the margin of error for numarielativity simulations of
black hole binaries throughout the field. A recent work hafaat estimated that the dif-
ferences in the waveforms produced by distinct cod@®lj$ismatcn = 1 — M ~ 10~ for
the last~ 1000M of the dominant mode of non-spinning equal mass coalesd2Be¢
Since the next higher mode= 3, m = 2 starts to suffer from numerical noise, it does
not yield the same high agreement, and the differences battvest and minimax match
show a larger deviation.

As a final comment on the accuracy of our waveforms, we notelieserror made by
using waveforms extracted at a finite radius, and not exlasgu at spatial infinity is well
within the error budget of our estimates. We have validalbésitiy comparing the wave-
forms extracted at a finite radius against the waveforms coedpat future null infinity,
via a newly developed Cauchy-characteristic code [240théncase of the nonspinning
configurations, we have found an error in the calculated SNR of less thaé¥t.

5.1.10 SNR Fits

As discussed in Secd.1.5 the maximum SNR depends on several factors, most notably
on the two initial spins, the total mass of the system antipaljh more weakly, on the
number of multipoles included in the waveforms. The resglfiunctional dependencies
when one degree of freedom is suppressed and the SNRs aeamtpein terms of the
total projected spin are shown in Figs3, 5.5and are too cumbersome to be described
analytically. However, most of the complex functional degence can still be captured
when concentrating on the best case scenario, and hence 8INRs relative to the opti-
mal massi/,¢. The behaviour of the SNR in this case is shown in BidQ where the
different symbols show the numerically computed valueg,.of (a, M) for the differ-

ent detectors. Figh.10represents the cross section along the optimal mass of &:i§)s.
and5.5 (note that the SNR for the advanced detectors have beereditig7 to make
them fit onto the same scale).

The behaviour of the SNR in this case is sufficiently simpsd thcan be represented
with a simple quartic polynomial of the type

4
pumax(a; £ <4, M = M) = > kna”, (5.18)
n=0

whose coefficientg,, are reported in Tablb.5for the five detectors considered.
When considering the optimal mass, the ratio of the SNRs faximally an-
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Figure 5.10: Different symbols show the numerically computed values of
pmax(a, Mope) for the different detectors and represent therefore
the cross section along the optimal mass of Fig8.and5.5. Note that
the SNR for the advanced detectors have been dividedtbynake them
fit onto the same scale.
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tialigned spinning binaries to maximally and aligned spignbinaries,i.e., pmax(a =
1)/pmax(a = —1) is ~ 3 for both the LIGO and Virgo detectors. This ratio is also pre-
served when considering the advanced LIGO and Virgo detedBecause the event rate
scales like the cube of the SNBf[expressionsH.9)-(5.12)], an increase of a factor 3

in the SNR of binaries witlh = —1 anda = 1 will translate into an increase of a factor
~ 27 in the event rate. It is therefore likely that many of the bies observed will have
high spins and aligned with the orbital angular momentunis Will be particularly true

in the case of LISA if the prediction that the spins of supessiae black holes are aligned
with the orbital angular momentum will hold [203].

5.1.11 Radiated Energy Fits

While the SNR is effectively a measure of the amount of enegtgased during the inspi-
ral, it also incorporates information on the propertieshef detectors and is not therefore
an absolute measure of the efficiency of the gravitatiorealevemission process. This
information can have a number of important astrophysicgliegtions. In particular, it
can be used to study the effect the merger has on the dynafrtivs crcumbinary disk
accreting onto the binary when this is massive [241, 242].

Table 5.5: Fitting coefficients for the maximum SNR computed for theimpi mass
[Eq. (6.9)]. The different rows refer to the various detectors andeHasen
computed including all modes up fo= 4.

detector ]{?0 kq ko ]{?3 kg
LIGO 50.76 | 27.11 13.43 8.58 | 4.63
eLIGO 102.45 53.63 25.33 17.67 | 11.26
AdLIGO | 1020.42 | 492.25 | 243.60 | 153.84 | 46.99
Virgo 71.86 | 35.23 | 17.140 10.92 | 3.789
AdVirgo 968.08 | 481.52 | 236.45 | 140.69 | 37.91

In this Section | present a simple formula to compute the arhofienergy released
and express it only in terms of the initial spins. Our formidarestricted to aligned
binaries. In practice, the expression for the radiatedgngr.q is derived by combining
a fit to the numerical data for the binaries at an initial anddiaeparationD = 8 M (we
refer to this energy as t&\1), with the estimate of the energy released from the binary
when it goes from an infinite separation down3qwe refer to this energy aEF;}j), i.e.,

T

Fraq = ENB + EPN = Mapy — Mg, + ERY (5.19)

T

where Mapy IS the initial ADM mass as measured at spatial infinity of timaby with

separationD, and Mg, the Christodoulou mass of the final black hole. For the fit ef th
radiated energy during the numerical evolutidi’fﬁ, we use the same symmetry argu-
ments first made in Chaptef][to write a simple expression which is a Taylor expansion
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in terms of the initial spins
Ei\g}(}(q = 17 at, aQ)

Vi = po + p1(a1 + az) + pa(a; + a2)2.

(5.20)

Fitting then the numerical data as in ChaptrWe obtain the following values for the
coefficients

_ 3.606 4+ 0.0271 _ 1.493 £ 0.0260
bo = —100 ) b1 = —100 )
0.489 £ 0.0254
= 21
D2 100 (5.21)

where the reduced chi-squaredyi$,, = 0.008, and where the largest error is in the
2nd-order coefficient but this is only 5%. Expressed in this way, the different coeffi-
cients 6.21) can then be interpreted as the nonspinning orbital carttab to the energy
loss (o, which is the largest and of 3.6%), the spin-orbit contributionz(, which is

< 3.0%), and the spin-spin contribution, which is < 2.0%). The relative error be-
tween the numerically computed value B} and the fitted one is reported in the last
column of Tables.1

The PN expression for the energy radiated by the binary wbermgdrom an infinite
separation down to a finite one= d, depends on the total mass of the binary, the mass
ratio and the spin components., ELY = EPN(r, M, v, a1, a2). Exploiting the fact that,
for equal-mass binaries, the PN radiated endzy} follows the same series expansion
used forEl{\;E}, namely a polynomial of the total spin, in this case, setfifig= 1 = ¢ we

obtain

Egg(ala@) _ gPN
M — *rad,0
+Ef;§’1(a1 +az) + Eg:ilg(al +az)?,
(5.22)
where the coefficients fab = 8 M are given by
py 6401 1.220
rad,0 ™ 594988 ~ 100
PN 985 N 0.0664
radl T 1048576y/2 100
1 0.00305
Ei2 = —m5mmz = . 5.23
rad,2 32768 100 (5.23)

Inspection of the coefficient® (23 reveals that the PN orbital contribution is orly33%,
the one of the strong-field regime, but also that the spiatedl PN contributions are
mostly negligible, being at most of 4% of those produced in the last orbits.

We can now combine expressiorisZ0-(5.21) with expressions®.22-(5.23 and es-
timate that for equal-mass binaries with aligned spins tieggy radiated via gravitational
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waves from infinity

Erad(ah a2)

T = po + pi(ar + as) + pa(ar + az)?, (5.24)
where
4.826 1.559 0.485
=, — o —_ D = —. .2
Po 100 ; P1 100 B D2 100 (5 5)

These numbers are specific to equal-mass binaries and oedesituation in which the
match between the PN evolution and the one in the strongrBgidthe is made at a specific
separation ofD = 8 M. However, we expect the results to depend only weakly on this
matching separation (as long as it is within a PN regime) @amté that expressions.24)

and 6.25 are generically valid at the precision we are considerhmgrt here, namely

~ 5%.

Using expressions(24 a number of quantitative considerations are possiblestliir
the largest energy is emitted by equal-mass, maximallyngpgnbinaries with spins par-
allel and aligned with the orbital angular momentum akbjsq(a = 1)/M = 9.9%. Sec-
ondly, equal-mass nonspinning binaries lose a considefadnttion of their mass via ra-
diation, withE,,q(a = 0)/M = 4.8%, while maximally spinning binaries with spins par-
allel and antialigned with the orbital angular momentumengy,q(a = —1)/M = 3.7%.

Expression$.24) is not a strictly monotonic function of the total spin andzelocal
minimum ata; = as = —p1/(4p2) ~ —0.8 rather than at; = as = —1, and yields
Eiaq(a = —0.79)/M = 3.6% (Fig. 5.11). Although rather shallow, we do not expect
such a local minimum. We therefore interpret it as an aitifddhe numerical error of
our calculations (the difference between the energy radiata; = ao = —1 and that
ata; = ao = —0.8 is ~ 2% and hence compatible with our overall error). Such a local
minimum can be removed by adding higher-order terms in egwa 6.20 (up to 4th
order ina; + as) but these improvements are so small that they do not justéyuse of a
more cumbersome expression. A comparison between the mainerues and the fitting
expressiorb.24is shown in Fig5.11, where crosses and squares represenEﬂ;]% and
E..q respectively, along the diagonal of the spin-diagram.,(for a; = as), while the
continuous line refers to our fitting expression. Note thathsa line is a 1-dimensional
cut of a 2-dimensional surface and hence it is not expecteddotly fit all points.

Lousto and collaborators have recently proposed a moregeioemula that should
account for the radiated energy in all of the relevant spapammmeters, namely for bina-
ries with arbitrary mass ratio, spin orientation and sizZ8.[Restricting their expression
to the specific subset of binaries considered here corrésgorsetting in their expression
(2): Ep = Eg =0,v =1/4andq = 1. The resulting expression is

ERIT 1 1 1
rad
Trad g —Fy+ —F
M 1 ISCO‘|‘16 2+64 3
1
+ o1 [Es(a1 + az) + Eaar + as)?

+ Ep(a —a2)?], (5.26)
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Figure 5.11: Energy radiated during the numerical calculatighi? (crosses), the total

radiated energ¥,.q = EXS + ETN (squares) along the diagonal of the
spin diagrami.e.,for a; = ao. Shown as a continuous line is the analytic
expressions given here (AEI fit), while the dashed line ithe suggested
in ref. [12] (RIT fit). Note that the lines represent 1-dimemsl cuts of
2-dimensional surfaces and hence are not expected to fitalvgibints.
Finally, indicated with a dotted line is the prediction fbetradiated energy

coming from the point-particle approach of [4] and refine{llig].
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where the fitting coefficients have been determined tdlbe= 0.341 4+ 0.014, F3 =
0.522 £+ 0.062, Es = 0.673 £+ 0.035, B4 = —0.014 + 0.021, Ep = —0.26 + 0.44 [12],

and where
V8 0.103803
Eisco = (1 ~ 3 + 1

1 5 9
+—F + + —F — . 5.27
48\@(@1 a2) 648\/§(a1 az) ( )

After a bit of algebra we can rewrit& 27) as
Epd (a1, a2)

T = Go + Gi(a1 + a2) + Ga(a1 + a2)® + Gz(a1 — az)?, (5.28)

where now

o1 V8  0.103803 Es Es 5.025
qO:Z l1—-—+ ——- — 6—4:

3 4 16 100
. 1 Eg 1352
D= Toov3 "6 T 100
B4 00219
©= 60 = " 100
i 5 Ep 0270
= Jpoava 64 T 100 (529

Comparing 5.24)-(5.25 with (5.28-(5.29 shows that the reduced expression from [12]
has a second order contributien(a; — a2)?, which is absent in our expression. The re-
maining coefficients are rather similar but not identicahisTcomparison is summarized
in Fig. 5.11, where the dashed line corresponds to the fitting proposeef.ifl2]. The
maximum efficiency for maximally spinning black holes pitdd by expressiorb(28
is ~ 8%, but our estimate is larger anrd 10%.

While the two expressions provide very similar estimatesf0.5 < a; = as < 0.4,
they also have predictions differing by more than20% for highly spinning binaries.
Expressionsd.28-(5.29 have error-bars that are as highla8%. In view of this, and of
the fact that the coefficients are constant, the simulatbanged out here could be used
for a new estimate of the free coefficietls, F'3, E5, andE 4 in (5.28. Finally, indicated
with a dotted line in Fig5.11is the prediction for the radiated energy coming from the
point-particle approach of [4] and refined in [13].

5.1.12 Discussion

We have considered in detail the issue of the detectabifitpimary system of black
holes having equal masses and spins that are aligned witbritiial angular momen-
tum. Because these configurations do not exhibit precesdfents, they represent a
natural ground to start detailed studies of the influencetraing-field spin effects on
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gravitational wave observations of coalescing binariagitifermore, such systems may
be the preferred end-state of the inspiral of generic suggesive binary black-hole sys-
tems [201-203]. In view of this, we have computed the in$@irel merger of a large
set of binary systems of equal-mass black holes with spirallphto the orbital angular
momentum but otherwise arbitrary. Attention is, thus, femlion the gravitational-wave
emission so as to provide answers to questions such as véhtiieatioudest” and “qui-
etest” configurations and what is the difference in SNR betwtbe two.

Overall we find that the SNR ratio increases with the projeciof the total black
hole spin in the direction of the orbital momentum. In adulitiequal-spin binaries with
maximum spin aligned with the orbital angular momentum aoeenthan “three times as
loud” as the corresponding binaries with anti-aligned spthus corresponding to event
rates up t@27 times larger. On average these considerations are onlylyvdagkendent
on the detectors, or on the number of harmonics considereohistructing the signal.

We have also investigated whether these binaries can leadlegenerate patch in
the space of templates. We do this by computing the mismattheen the different
spinning configurations. Within our numerical accuracy \&eehfound that binaries with
opposite spinsS; = —S, cannot be distinguished, whereas binaries with iin= S,
have clearly distinct gravitational-wave emissions. Tieisult may represent a serious
obstacle towards a proper estimate of the physical parasmatbinaries and will probably
be removed only if the SNR is sufficiently high.

Finally, we have derived a simple expression for the eneagyated in gravitational
waves, and find that the binaries always have efficiengigg/M = 3.6%. This can
become as large ds,.q/M ~ 10% for maximally spinning binaries with spins aligned
to the orbital angular momentum.

5.2 Spin Templates

Building on the simulations and analysis preformed in Caapt] and on the analysis
performed in the previous section, we present the first éinalynspiral-merger-ringdown

gravitational waveforms from black-hole (BH) binaries lwiton-precessing spins. By
matching a post-Newtonian description of the inspiral t@ta$ numerical calculations
performed in full general relativity, we obtain a waveforanfily with a conveniently

small number of physical parameters. The physical contetitese waveforms includes
the “orbital hang-up” effect, when BHs are spinning rapidlpng the direction of the

orbital angular momentum. These waveforms will allow us étedt a larger parameter
space of BH binary coalescence, to explore various sciemifestions related to GW
astronomy, and could dramatically improve the expecteddtien rates of GW detectors.

As discussed in Sectior2[Z], while the inspiral and ring-down stages of the BH
coalescence are well-modeled by perturbative techniqaesaccurate description of
the merger requires numerical solutions of Einstein’s equations. héligh perform-
ing numerical simulations over the entire parameter spdd@Hocoalescence is com-
putationally prohibitive, waveform templates modeling) three stages of BH coales-
cence can be constructed from existing simulation and Pid bgtcombining those
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Figure 5.12: Phenomenological parametets, f1, f2, fs and o computed from the
equal-spinhybrid waveforms (dots), and the analytical fits given by
Eq. (6.32 (surfaces). Test-mass limit is indicated by black tracess
the symmetric mass ratio andis the spin parameter.

analytical- and numerical-relativity results. Thus drécaly improving the sensitivity

of searches for GWs from BH binaries, and the accuracy ahesiing the source param-
eters [7, 14, 243, 244]. To date, “complete” inspiral-mengegdown (IMR) templates

have been computed only for nonspinning BH binaries [7,34Q9, 244], which are ef-
fectively employed in GW searches, and in a number of asysipél studies [245-247].
However, nonspinning BHs are expected to be astrophygicale, and most BHs in na-
ture may be highly spinning [248—-250]. This necessitatesrtblusion of spinning-binary

waveforms in detector searches.

In this section, | present an inspiral-merger-ringdown RMwaveform family
modelling the dominant harmonic of binaries with non-pesteg spins (i.e., spins
parallel/anti-parallel to the orbital angular momentunmhese waveforms will signifi-
cantly improve the “distance reach” of present and future @téctors and will facil-
itate various astrophysical studies. Aligned-spin besrare an astrophysically inter-
esting population as such systems are expected from idobdtery evolution and in
gas-rich galactic mergers [201-203]. Such systems alsibiekinportant strong-gravity
effects like the “orbital hang-up”. We make use of the degeacies in the physical pa-
rameters to parametrize our waveform family by only theltotassM = my + mg
of the binary, the symmetric mass ratjo= m;ms/M?, and asingle spin parameter
X = (1+0)x1/2+ (1 —6)x2/2, wheres = (my — ma)/M andy; = S;/m?2, S; being
the spin angular momentum of thth BH. The last feature is motivated by the observation
(see e.g., [251]) that the leading spin-orbit-couplingrtén post-Newtonian waveforms
is dominated by this parameter.

5.2.1 Numerical simulations

Binary BH (BBH) waveforms covering at least eight cyclesdvefmerger were produced
by solving the full Einstein equations numerically, as tert in the “moving-puncture”
3+1 formulation described in Sectio@.f.4. The numerical solutions were calculated
with the BAM[153, 252] andCact us described in Section2[7] codes, starting with
initial data that model BHs with conformally flat puncturd®]61]. Initial momenta were
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chosen to give low-eccentricity inspiral, using either ateasion of the method described
in [88], or the quasicircular formula used in [253]. GWs wesdracted alR., = 90M
with BAMand R., = 160M with Cact us, using the procedures discussed in Section
[2.6.3. In all simulations the GW amplitude is accurate to withilesmast 10% and the
phase accurate to within at least 1 radian over the durafitimecsimulation. Studies in
the equal-mass nonspinning case suggest that these wasgefoe within the accuracy
requirements for both GW detection and source parametenagdgin with the current
LIGO and Virgo detectors as shown in Secti@nl].

Five sets of simulations were used in this paper:

1. Equal-mass binaries with spins equal and parallel to tharys orbital angular
momentum, withy; = +{0.25,0.5,0.75,0.85}.

2. The same general non-precessing spin configuration sing unequal-masbina-
ries withg = my /mq = {2,2.5,3} andy; = {£0.5,0.75}.

3. Nonspinning binaries with = {1,1.5,2,2.5,3,3.5,4}.
4. Unequal-mass, unequal-spin binaries with {2, 3} and(x1, x2) = (—0.75,0.75).
5. Equal-mass, unequal-spin binaries with= +{0.2,0.3,0.4,0.6}.

The simulation sets (1)—(4) were performed with 8&Mcode, while set (5) was per-
formed with theCact us code. The analytical waveform family is constructady em-
ploying the equal-spin simulation sets (1)—(3), while $é)sand (5) were used to test the
efficacy of the template family to model the expected sigfrals more general spin/mass
configurations.

5.2.2 Constructing hybrid waveforms

Following [14, 209], we produce a set of “hybrid waveformsy matching post-
Newtonian (PN) and numerical-relativity (NR) waveformsamoverlapping time interval
[t1,t2]. These hybrids are assumed to be the target signals that mtetovdetect. For
the PN inspiral waveforms we choose the “TaylorT1” appramin[254] waveforms at
3.5PN [228] phase accuracy. This is motivated by PN-NR coispas of equal-mass
spinning binaries, in which the accuracy of the TaylorT1ragpgnant was found to be
the most robust [208, 225]. We include the 3PN amplitudeemtions to the dominant
guadrupole mode [234] and the 2.5PN spin-dependent cimnecf251], which greatly
improved the agreement between PN and NR waveforms.

If h(t) = hy(t) — ihy (t) denote the time-domain waveform from a binary, we match
the PN and NR waveform$,"N(¢) andh™R(¢), by minimizing their integrated squared
difference,

2
|” (8 — Lg), (5.30)

to
D= min / [WN(t + At, o + Do) — ah™H(E, o)
At7A§007a t1

where ¢ is the initial phase of the wave andis a scale factor that reduces the PN-
NR amplitude difference. The NR waveforms are combined ti¢h“best-matched” PN
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Figure 5.13: Fitting factor and faithfulness (in LIGO noise spectrum)ai-spinning
phenomenological templates with spinning hybrid wave®oonstructed
from NR simulations sets (1), (2) and (3).

waveforms in the following wayh™"(t) = a7 (t) hNR(¢) + (1 — 7(¢)) hPN(¢), wherer
ranges linearly from zero to one for [t1, t2].

5.2.3 Efficiency of non-spinning IMR templates to search fobinaries with
non-precessing spins

It has been shown that PN inspiral signals from binaries nith-precessing spins can be
detected using non-spinning PN templates without sigmifittess of SNR [255]. Here we
show that, in the case of complete coalescence signalsficagr loss of SNR is incurred
upon neglecting the spin effects even in the absence ofisgdirced precession. As a
demonstration, we estimate the efficiency of the non-spmiiVIR templates proposed in
Refs. [14, 15, 209] in detecting GWSs from binaries with noagessing spins by comput-
ing thefitting factor [256] (FF) andfaithfulnesg236] of the non-spinning templates with
the spinning hybrid waveforms discussed previously (bid6). Given a target wave-
form, FF is the maximizedhatch[257] between the target and templates drawn from the
template bank, while the faithfulness is measured by tattiegnatch between the target
and the template with the same physical parameters. Notehthatandard criteria for
templates used in searches is that the FF exceed 0.97, wiridsponds to a loss of no
more than 10% of signals due to mismatch of signal and teeml&tFs as low as 0.8 sug-
gest that~50% binaries may go undetected if nonspinning IMR templatesemployed
to search for binaries with high spins (in the hang up conéigon), while faithfulness as
low as 0.3 suggest that the estimated parameters will bdismtly biased.



191 5.2 Spin Templates

5.2.4 Waveform templates for non-precessing binaries

The analytical waveforms family to model GWs from binarieghwon-precessing spins
that we construct can be written in the Fourier domain@d = A(f) e ¥, where

6 f/77/6(1+25’:204wi) if f<hfi
AP = 8w, f'—2/3 A+32 gv) FA<F<fo
L(f, fa,0) if fo < f<fs,

U(f) = 27Tft0—|—ap0—|—128 1—1—2?) V). (5.31)

In the above expressiong! = f/fi, v = (tMf)Y/3, e = 1.4547 y — 1.8897, ¢y =
—1.8153 x + 1.6557, C'is a numerical constant whose value depends on the skyidocat
and orientation of the binary as well & andn, «; (a2 = —323/224 + 4517/168 and

ag = (27/8 — 111/6)x) are the PN corrections to the Fourier domain amplitude ef th
(¢ = m = +£2 mode) PN inspiral waveform [251} is the time of arrival of the signal
at the detector ang the corresponding phasé( f, f2, o) a Lorentzian function with
width o centered around the frequengy, w,,, andw, are normalization constants chosen
so as to maked(f) continuous across the “transition” frequencigsand f1, and f3 is

a convenient cutoff frequency such that the power of theadighove this frequency is
negligible. The phenomenological parametefs= { f1, f2, o, f3} andyy, are written in
terms of the physical parameters of the binary as:

TMpu; = a) +aln+ayn? + ] x + cnx + chy nPx + b
- C{2nx2++rr§277x F U 4 ey Y,
Y = af +a177+a277 +b’“x+61177x+02177 X

+ ng +0127796 +C2277 X +b3X +C1377X7
(i)

T sz,(jj)uixj, Zzyk s (5.32)

i=1 j=0 i=1 j=0

whereN = min(3 — i,2) while x( 2 andy(”) are tabulated in Tabl&.6. Figure5.12
plots the values of);, and p; estimated from the hybrid waveforms, as well as the fits
given by Eqg. §.32.

We match these waveforms to 2PN accurate adiabatic inspaaeforms in the
extreme-mass-ratio limit. These Fourier-domain wavefare constructed from a PN
expansion of the (exact) binding energy given in Ref. [25&] ¢he 4PN-accurate GW
luminosity given in Ref. [259]. In they — 0 limit, the phenomenological parameters
reduce to the following quantities:

fi — fisco, fo— fonm, o — fonm/Q, U — Uy, (5.33)

where fisco and fonu are the frequencies of the innermost stable circular oB&8]
and the dominant quasi-normal mode, apds the ring-down quality factor [260] of a
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Faithfulness

Figure 5.14: Fitting factor and faithfulness of the spinning templatéthvequal-spin
hybrid waveforms (using Initial LIGO noise spectrum).

Kerr BH with massM and spiny, while 1,[12 are the Fourier domain phasing coefficients
of a test-particle inspiralling into the Kerr BH, computesing the stationary-phase ap-
proximation.

The test-particle-limit waveforms suffer from two limitans: 1) we assume that the
evolution of the GW phase at the merger and ringdown stagesastinuation of the adi-
abatic inspiral phase, and 2) in the absence of a reliableehfiodplunge, we approximate
the amplitude of the plunge witff—2/3 (1 + Zle ¢; v'). Nevertheless, in the test-mass
limit, it is expected that the signal will be dominated by tbeg inspiral stage (followed
by a quick plunge and ringdown), and the inspiral is guarthte be well-modelled by
our waveform family. More importantly, the imposition oftlappropriate test-mass limit
in our fitting procedure ensures that the waveforms are watlbbbed even outside the
parameter range where current NR data are available. Beodidkis, and the inclusion
of the PN amplitude corrections, these waveforms are eggeotbe closer to the actual
signals than the templates proposed in [14, 15] in the nomsp limit (thus explaining
the difference between the two waveform families).

5.2.5 Efficiency of the new templates

We have examined the “faithfulness” of the new templatesepraducing the hybrid
waveforms by computing thmatch(noise-weighted inner product) with the hybrids. Loss
of the SNR due to the “mismatch” between the template andtigesignal is determined
by the match maximized over the whole template bank — cditedg factor (FF). The
standard criteria for templates used in searches is that B®7, which corresponds to a
loss of no more than 10% of signals.

Match and FF of the analytical waveforms with the equal- uad) spin hybrid
waveforms are plotted in Figh.14 (Fig. 5.15, using Initial LIGO design noise spec-
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Table 5.6: Coefficients describing the amplitude and phase of the phenological waveforms. See E§.82.
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Figure 5.15: Fitting factor of the spinning templates witmequal-spirhybrid wave-
forms (using Initial LIGO noise spectrum). Paramet@rsy1, x2) of the
hybrid waveforms are shown in legends.

trum [261]. Note that the analytical waveform family is ctomsted employingonly
the equal-spin hybrid waveforms. The PN-NR matching regised to construct the
unequal-spin hybrids are also different from that used éura¢-spin hybrids. These fig-
ures demonstrate the efficacy of the analytical templatesproducing the target wave-
forms — templates are “faithful” (matchk 0.97) either when the masses the spins are
equal, while they aralways“effectual” in detection (FE> 0.97). These figures may be
contrasted with Fig5.16 which details the effect of neglecting spin in the constaic
of the templates. This figure plots the matches of the nonrspy IMR template family
proposed in [14, 15] with the equal-spin hybrid waveforms$:s s low as 0.8 suggest
that up to 50% binaries may go undetected if nonspinning IEiRdates are employed
to search for binaries with high spins (in the “hang-up” coufation), while matches as
low as 0.3 suggest that the estimated parameters will bdismtly biased.

Effective distance to optimally oriented BBHs (modeled bg hew templates) pro-
ducing optimal SNR of 8 at Initial LIGO noise spectrum is simoin Fig. 5.17, which
demonstrates the dramatic effect of spin for detectiongifitmass binaries; if most BBHs
are highly spinning, then LIGO will be able to detect BH caakences up to 1Gpc, thus
increasing the event rates as much as five times compareddiziions based on models
of nonspinning binaries. For Enhanced LIGO/Advanced LIG&edtors, the peak hori-
zon distances are 2Gpc/19Gpc and similar improvementstiogeronspinning templates
are found.

5.2.6 Discussion

We find that as many as 50% of signals may be lost when non4iggitiMR templates are
used to search for binaries with non-precessing spinsaligo the angular momentum.
To address the need for spinning IMR templates, we combate-sf-the-art results from
analytical and numerical relativity to construct for thefftime a family of analytical IMR
waveforms for BBHs with non-precessing spins from “firshpiples”. These templates
do not contain unphysical parameters, and we show thatéquuihposes of GW detection
it is sufficient to represent the spins by a single paraméthrs will considerably sim-
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Figure 5.16: Match and FF ohon-spinnindMR templates proposed in [14,15] with the
equal-spin hybrid waveforms. A comparison with Pigl5demonstrates
the effect of neglecting spins.

plify the use of our waveforms in GW searches in the near &utlihis method can readily
be generalized to incorporate non-quadrupole sphereaitbnic modes, larger portions
of the binary BH parameter space and further informatiomfemalytical approximation
methods or numerical simulations which are more accurat&tend the parameter space.
This will significantly accelerate the incorporation of Nésults into the current effort for
the first direct detection of GW signals. There are many dithenediate applications of
our waveforms: injections into detector data will help td more realistic upper limits
on the rate of BBH coalescences [245, 246] (thus directiditento astrophysical re-
sults), and to compare the different algorithms employeth@search for GWs from
BBHSs [210], while employing these in population-synthesiadies will provide more
accurate coalescence rates observable by the current mmd €letectors. Comparisons
with precessing waveforms will help us to understand thdigafions of spin precession
for detecting binaries with larger masses, and the wavefonith be used to characterize
the effect of (non-precessing) spins in the parametemeasion of BH binaries.
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spinx producing optimal SNR 8 in Initial LIGO.
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Conclusions

Coalescing black-hole (BH) binaries are among the most {giagncandidate sources for
the first direct detection of gravitational waves (GWSs). ISabservations will lead to pre-
cision tests of the strong-field predictions of generaltiétst as well as provide a wealth
of information relevant to fundamental physics, astrojits/sand cosmology [262]. Com-
putation of the expected waveforms from such sources is ajkayin current gravita-
tional research. The results in this thesis are steps tstasghis process.

6.1 Boundary Conditions

Besides the importance of having a well-posed system, tharpractical consequence of
defining correct conditions at the boundary. This is the tlaat this choice allows one to

place the boundary conditions, in principle, in any placergtthe linearized assumptions
hold, thus reducing the need for making large numericalsgwith the consequence of
savings in computational resource requirements needenhtdade a given problem.

| have examined the initial boundary value problem for thepad-order formulation
of the Einstein equations in the generalized harmonic gadde system of evolution
equations for this finite-difference harmonic code waswéerin [40] where it was shown
to be accurate, stable, and convergent for long-term @eokiof black hole space-times,
such as head-on collisions of two black holes, isolatedkblemes, and binary black
hole inspiral and merger. | described the derivation, imm@etation and testing of a new
boundary treatment for this system. | demonstrated thainiv treatment maintained the
validity and convergence (to lower order) seen with thedaiath boundary treatments. |
additionally showed that these conditions give us greatewracy (for all reasonable res-
olutions), improved constraint preservation, improvedrmary transparency, and greater
stability in robust stability tests.

| have derived boundary conditions that preserve the cainsrand lead to a well-
posed initial-boundary value problem for the BSSN formiolatbased on the work of
Dario Nufiez and Olivier Sarbach. These conditions are gingerms of the variable
fields and its derivatives at the boundary. | have shown tmaffinal system is indeed
symmetric hyperbolic and preserves the constraints irirtieal, constant coeeficient limit
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for conformally flat data. | have also given a discussionteelahe numerical implemen-
tation of these boundary conditions. Unlike standard nathone does not over-specify
the conditions on the boundary surface for the method pexbosSection3.2).

With binary black hole evolutions now extending over muétiprbits, and thus many
crossing times on conventional computational grids, baundffects can potentially have
a non-trivial influence on the late-time dynamics and ex¢é@gravitational wave signals
from such simulations. For sufficiently distant boundaiieshe linearized regime, the
boundary conditions described in the present work will helmake the numerical evolu-
tions of relativistic spacetimes more robust. In terms aicfical gain, there is still much
work to be done in order to quantify the importance of usingcaete boundary condi-
tions. However, any improvement in accuracy and efficiescg valuable contribution
for the current state of the field of numerical relativity.

6.2 Physics

Using the results from a number of numerical simulationshioary black hole initial
data, | have considered the spin vector of the BH produced B dinary merger as
the sum of the two initial spins and of a third vector, patdtiethe initial orbital angular
momentum, and measures the orbital angular momentum riatedd Without other fits
than those already available to model aligned/antialigiedries, | have measured the
unknown vector and derived a formula that accounts for alhef7 parameters describ-
ing a BH binary inspiralling in quasi-circular orbits. Thguations 4.71) and @.74),
encapsulate the near-zone physics to provide a conveagemiell as robust and accurate
prediction over a wide range of parameters, determinatidneomerger product of rather
generic BH binaries.

Testing the formula against all of the available numeriegihdrom recent publications
and from our own simulations has revealed differences lmtvike predicted and the
simulated values of a few percent at most. This approachriasically approximate and
it has been validated on a small set of configurations. It eeimiproved: by reducing the
x? of the fitting coefficients as new simulations are carried bytusing fitting functions
that are of higher-order than those in expressi@gnsg and @.65; by estimatinngtd
through PN expressions or by measuring it via numerical kitizuns.

Overall, the data sample computed numerically consist8ofaBues for|v;.x| and
for ag, which, for simplicity, we have considered to have constardrebars of8 km /s
and0.01, which represent, respectively, the largest errors regddrt [87]. In both cases
we have modelled the data with generic quadratic functians ianda, so that, in the
case of the recoil velocity, the fitting function is

|Ukick| = |CQ + cra1 + CQCL% + d0a1a2 —+ d1a2 + dga%| . (61)

The fitting function on the right-hand-side @.{) is smooth everywhere but that its abso-
lute value is not smooth along the diagonal= a5. Using 6.1) and a blind least-square
fit of the data, we obtained the coefficients kim /s) with a reducedy? = 0.09. | can
use the constraint that no recoil velocity should be proddoebinaries having the same
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spin,i.e, that|v| = 0 for a; = as, or the symmetry condition across the ling= as.
Enforcing both constraints yields

co=0, c=-di, co=—da, dp=0, (6.2)
thus reducing the fitting functior6(2) to the simpler expression

|vkick| = |e1 (a1 — ag2) + cz(af — a22)| . (6.3)

Performing a least-square fit usirg}§ we then obtain
c1 = —220.97 +0.78, co = 45.52 +£2.99, (6.4)

with a comparable reduced® = 0.14, but with error-bars that are much smaller on
average. Because of this, we consider expres€i@) &s the best description of the data
at second-order in the spin parameters.

In the same way we have first fitted the datadgg, with a function
afin = Po + P1a1 + p2ai + qoaras + qias + gaa3 (6.5)

and found coefficients with very large error-bars. As a tesuo forag, we resort to
physical considerations to constrain the coefficignts. . ¢o. More specifically, at least
at lowest order, binaries with equal and opposite spinsneiiicontribute to the final spin
and thus behave essentially as nonspinning binaries. dSdéfterently, we assume that
agn = po for binaries witha; = —ao. In addition, enforcing the symmetry condition
across the line; = ay we obtain

PL=q, P2=q =q/2, (6.6)
so that the fitting function@.5) effectively reduces to
agn = po + p1(ar + az) + pa(ar + az)?. (6.7)
Performing a least-square fit usirg ) we then obtain

po = 0.6883 £0.0003,  p1 = 0.1530 % 0.0004
po = —0.0088 + 0.0005 , (6.8)

with a reducedy? = 0.02.

Being effectively a power series in terms of the initial spof the two black holes,
its zeroth-order term can be seen as the orbital angular mtimenot radiated in grav-
itational waves and which amounts, at most~t&@0% of the final spin. The first-order
term, on the other hand, can be seen as the contribution fm#iespin coming from the
initial spins of the two black holes and this contributioagéther with the one coming
from the spin-orbit coupling, amounts at most+030% of the final spin. Finally, the
second-order term, which is natural to expect as nonzeltusrview, can then be related
to the spin-spin coupling, with a contribution to the finalnswhich is of ~ 4% at most.
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We further performed simulations with an unequal massesafgded spins (see Ta-
ble 4.6) and obtained a third order polynomial fit ffars,, | from arbitrary symmetric mass
ratiov = M; M, /(M; + Ms)? and the aligned equal spins of the initial BHs= .J/M?,
i.e.,ag, = Jﬁn/Mgn = afn(a, v)

ain = S0+ S1a + s2a® + sza® + s4a’v + ssav® +
toav + tv + tav? + tav>. (6.9)

as shown in figurd.17. Determining the remaining five coefficients from a leasiessq
fit of the available data yielded

sg=—0.129+£0.012, s5=—0.384+0.261,
to = —2.686 £ 0.065,  ty = —3.454 + 0.132,
t3 = 2.353 + 0.548, (6.10)

we then ran simulations for misaligned spins (see tdliflpand obtained a fit for arbitrary
initial spins and mass ratip= M, /Mo

1
s = s [l + laafa* + 2laslfar]¢? cosa+

2 (Jay|cos B+ |az|q® cos ) |€]q + ]E]zqz] 2 , (6.11)
where
€| = (1_574(12)2 (|a1|2 + |az)?q* + 2|ay||as|q? cosa) +
(%) (|a1| cos 3 + |ag|q2 cosy) +
23 + tov + g2 (6.12)

These formulae give fairly accurate predictions for thelfsm@n and kick of a merged
black hole and will be useful for studies of the evolution gbermassive black holes and
on statistical studies on the dynamics of compact objedieitse stellar systems, as well
as significant effect on the waveform and impact on paranesténation for gravitational
wave detectors.

6.3 Analysis

We have considered in detail the issue of the detectabifithimary system of black
holes having equal masses and spins that are aligned witbritital angular momen-
tum. Such systems may be the preferred end-state of theahspgeneric supermassive
binary black-hole systems [201-203]. In view of this, wedaemputed the inspiral and
merger of a large set of binary systems of equal-mass blalds lvath spins parallel to
the orbital angular momentum but otherwise arbitrary. wtite is, thus, focused on the
gravitational-wave emission so as to provide answers tetoures such as what are the
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“loudest” and “quietest” configurations and what is the efince in SNR between the
two.

Overall we find that the SNR ratio increases with the projeciof the total black
hole spin in the direction of the orbital momentum. In adulitiequal-spin binaries with
maximum spin aligned with the orbital angular momentum aoeenthan “three times as
loud” as the corresponding binaries with anti-aligned spthus corresponding to event
rates up t@7 times larger. On average these considerations are onlylyvdakendent
on the detectors, or on the number of harmonics considereahistructing the signal.

We have also investigated whether these binaries can leadlémenerate patch in
the space of templates. We do this by computing the mismatbheen the different
spinning configurations. Within our numerical accuracy \@eehfound that binaries with
opposite spinsS; = —S» cannot be distinguished, whereas binaries with in= S,
have clearly distinct gravitational-wave emissions. Tieisult may represent a serious
obstacle towards a proper estimate of the physical parasmaftbinaries and will probably
be removed only if the SNR is sufficiently high.

We find that as many as 50% of signals may be lost when noniggitMR templates
are used to search for binaries with non-precessing spimseal to the angular momen-
tum. To address the need for spinning IMR templates, we coendtiate-of-the-art results
from analytical and numerical relativity to construct foetfirst time a family of analyt-
ical IMR waveforms for BBHs with non-precessing spins frofinst principles”. These
templates do not contain unphysical parameters, and we tstafior the purposes of GW
detection it is sufficient to represent the spins by a singtaimeter. This will considerably
simplify the use of our waveforms in GW searches in the netaréu This method can
readily be generalized to incorporate non-quadrupole riggieharmonic modes, larger
portions of the binary BH parameter space and further inétion from analytical ap-
proximation methods or numerical simulations which are enaccurate or extend the
parameter space. This will significantly accelerate therparation of NR results into
the current effort for the first direct detection of GW signalhere are many other im-
mediate applications of our waveforms: injections intcedtdr data will help to put more
realistic upper limits on the rate of BBH coalescences [248] (thus directly leading
to astrophysical results), and to compare the differerdrityms employed in the search
for GWs from BBHSs [210], while employing these in populatisynthesis studies will
provide more accurate coalescence rates observable byttenicand future detectors.
Comparisons with precessing waveforms will help us to ustded the implications of
spin precession for detecting binaries with larger massabsthe waveforms will be used
to characterize the effect of (non-precessing) spins inpdm@ameter-estimation of BH
binaries.
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Appendix A

Appendix

A.1 Well-posed boundary terms with SAT

Consider a domain represented by a discrete grid consisfipQintsi = i,y - - - tmaz
and gridspacing. = Zmai’%jmn coveringz € [a,b]. A 1D difference operatoD on such

a domain is said to satisfy SBP with respect to a scalar ptddefined by its coefficients
0i5)
E = (u,v) = hZui - V0, (A.2)
ij
if the property
(u, Dv) + (v, Du) = (u-v) [; (A2)

holds for all gridfunctions:, v € L?[a, b]. The scalar product is diagonaldf; = 0;;6; ;.
One advantage of 1D difference operators satisfying SBPdiéigonal norms is that SBP
is guaranteed to hold in several dimensions if the 1D opeiatased on each direction
(which is not known to hold in the non-diagonal case in gdhera

For the advection equatiahu = 9,u the semidiscrete equation with penalty term is
written as

0i0T
w; = ADu; + .0 (g — UQ). (A.3)
haooo

Defining the energy a8 = (u, u), and defining it’s time derivative as
E = (A —2T)ud + 2guoT, < (A — T)ud + Tg>. (A.4)

With positive speed, we can také = A + §; 0. Forg = 0, we haveEl = (A — 2T )u3,
thus showing that the energy won't increase.

Having a 1D operator that satisfies SBP with respect to a dielgecalar product
¥ = (04j) = 0;;0;, one can construct a 3D operator by simply applying the 12 difice
operator to each direction. The resulting 3D operator f&edisSBP with respect to a
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diagonal scalar product
(u,v)s = hghyh, Zo'ijkuijk Uik,
ijk

with o, = o,0,0;. Defining a 3D difference operator by just applying this one-
dimensional one to each direction will satisfy SBP with exgpto the trivial 3D scalar
product.

Then, for some boundary conditions, the 3D semidiscretatezufor the 3D advec-
tion may be written as:

(5i70T
ho 00

(Sj,QT
ha'yo()

O 0T

Uil = Ny Dugjp, + T
ho 00

(gx - uxO) + (gz - uyO) + (gz - uzO)- (AS)

Now we consider the system of Equatians- A*0,u = A*0,u+ AY0,u, whereu is
avector-valued function andl*, and A¥ are symmetric and constant coefficient matrices.

The 3D scalar product is defined as the product of the scaddupt on each direction,

E = (u,v) = hgzh, Zij(uz’j,vz‘j)a(z)iay(j), (A.6)

where (u, v) is the Euclidean scalar product of two vectotenithe semidiscrete equation
with a SAT penalty term is:
. T
uij == A“@uuij — U450
¥ (y)j=0

and the time derivative of the energy of the system is then:
E = hx Z ia(x)i[(uw, (A” — QT)'LLZ"O]
With positive speed, we can talé= A + §. Forg; = 0, we haveE = (A* — 2T)u22,0,

thus showing that the energy won't increase.

A.1.1 Second Derivatives

The first derivative operator works as in the 1D case, exdelppandary edges and cor-
ners. SBP applied to the energy method will give a specifictiwi for the penalty term
at the boundaries, as this depends on the space of the atpjatiall give the wave equa-
tion solution in the next section. The second derivativlégsdame except that there is the
guestion of the value of

Dy=H Y(-DTHD, + BS) = H'(—A + BS) (A7)

for mixed coordinateslf, = D;; fori # j). These terms are derived in Secti@[.1.
First | will introduce the terminology:

e S; is the approximation of the first derivative operator at tbardaries. "S" is for
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stencil.

Qi + Q;? = B; = diag(—1,0...,1).

e A;; = DI'HD; represents the part of the second derivative that is thesaqiizhe
of the first derivative without a penalty term.

e D,; = H1(Q; + R;) is the upwind first derivative term.
e D_; = H 1(Q; — R;) is the downwind first derivative term.

e DI; = H 'R, is the artificial dissipation termi{ = R”).

With this notation we use the second semidiscrete derasitiv

1

D) = 5(D4iD—i + D_iD1i) = H™' (=D HD; + B;D;) = DIl HDI; (A.8)
1 1

DZ(JU) = §(D1D] + DJDZ) = Z[(DJFZ‘D,]' + D,Z'DJFJ') + (DJerii + DijDJri)]

LH Qi+ RYT(Q, - By) + (i — RYT(Q, + R))

+ (@ +R)T(Qi — Ri) + (@5 — R)T(Qi + Ry))
“H(QFQ; +QYQ:) — (RIR; + RTR;)]

Aij + Aji) — (DIFHDI; + DITHDI;
J J

for the unmixed and mixed second derivatives, respectively

A.1.2 Wave Equation in Flat Space

Here, as an instructive example, | will show the derivatibeimultaneous approximation
penatly terms (SAT) to enforce conservation of energy taiensvell posedness with
artificial outer boundaries. The energy method applied éonthve equation in flat space
Utt = Ugg + Uyy + Uz GIVES:

' tugu [220)
(A.9)

If we use the boundary conditions (assuminggalandg, are zero) then for the bound-

ariesofi=0,1..., N - 1,N

(IIUtII2 el + g 1 + fes2) = 2 520 ey [

[(5@70(04 + D)J; + 5j70(06 + D)y + 5k,0(04 + D)z]uwk = —ut(O) , (A.lO)
[0i,n(B+ D)y + 65 N(B+ D)y + 0 n(B+ D)Juir, = ue(N).
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with « < 0 andg > 0 so that an energy estimate is possible. The energy methdsl tea
leads to:

d
= (llel® o+ Nt [ + flay [ + e [1*) = (A.11)

(g, wge) + (g, we)) + ((wiy wie) + (wig, wi)) =
(Cues wii) + (was, we)) + (g, wje) + (wje, ug))

By applying the SBP conditiofu, Dv) + (v, Du) = (uv) |% this is:
E = 2uu; |izzé\h (A.12)
| do the same to the semidiscrete approximation of the wawuetem in flat space
vy = Hx_il(—Aii + BS))v 4+ 1oH ' Eo(aguvs + oSiv) + wH L En(anv, + B]\(/Slv))
A.13

where are vectors of lengtN andEl" = (1,0,...,0) andEL = (0,0,...,1). Applying
the energy method | obtain

E = 2upu; ‘izzgm +2To(a0u?Eout+ﬂ0u?EQSiu)+2TN(04NU?ENut+ﬂNU?ENSZ‘u)

(A.14)
In order to control the energy growth | must set tfeS;u terms to zero, thusy 3y = 1
andry Oy = —1. lalso wantry (oo L + 5p) = 1 andry (any R+ Bx) = —1 for boundary
conditionsu; = dy ; Lu; + dn,;Ru; so for the wave equation | get
vy = Hy'(— Ay + BS;)v+ H; 'EoSiv — Hy ' ENSiv (A.15)

To prescribe boundary conditions at the corners and edgesjg not need a hormal
vector except for the spacing coefficiert:t /(dz? + dy* + dz?) ). One can just look at
the contribution to the semidiscrete energy above from tigee (i.e. (X,y,2)=(0,0,2)) or
corners (i.e. (x,y,2)=(0,0,N)).

A.1.3 Wave Equation in General

_Aij it
The energy method applied to the wave equatign= (thaiaj — 2%8@)21 gives:

d vij
& (P + 1= T ) = (A.16)
'
(Qut, wee) + (uge, ue)) + —W(Whuﬁ + (i, uz)) =
i it
—W(@tvuiﬁ + (g, ue) + (wi, wje) + (wie, wj)) — QW(%’WQ + (wit, ug))
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By applying the SBP conditiofu, Dv) + (v, Du) = (uv) |? this is:

wa T z;=N; T rj=N; fyit 2 |zi=N;
,Ytt [(u; Dju) |1'i:0 +(u; Diu) 2,0 1+ 2Wut |1'i:0 = (A.17)
ij it

_2[W(utuj) |:v¢:0 +W(ut) |§i:0 ]
Then applying the boundary conditions = &g, o;u; + O 2, Biw;

= 2[(V Biuiuj =N, A" Biuiy |oi=n;) (A.18)
= (YWosuiuy |z—0 +7" ciuig |z,—0)]

- _2[(ﬁiut ,thth) ‘xi:Ni (alut ’Yltu%) ’961':0]

So:
—f = 2[EN, (@Ut Uy — ’YitUtTUt) - Eo(aiUtTUt - ’YitUtTUt)] (A.19)

If we start, again, with our wave equation and add the penattys before we derive the
time derivative of the energy:

ij it
Vg = —%Hﬁl(—Azj—{—BSi)v X

+ ToH ' Eo(agvs + BoSiv) + 75, H P En. (an,ve + B, Siv)

Hilint (AZO)

We again calculate the time derivative of the energy norm:

a (Hu 12+ - ]WH> = (e )+ e ) = 2 (s )+ i 03) (A20)

And apply summation by parts in the integration:

’Yij T =N, N, ,Yz't T =N
- W[(Ut Sjv) ’i = +(Ut Siv) ’i;:OJ] - Q,Yttvt UVt |z;=0 (A.22)

T T
+ 279, 00,0, Eoi?}t + QTOiﬁOiUt EOiSiU

T T
+ 2TNiaNivt ENiUt + QTNiBNiUt ENiS’iU
it it

= 2(TNiaNi — %)U;EN,'W + 2(T0i040i + 7T

-
G v, Eo, v

,.Yij ,Y'j
+ 2(TNZ-BNZ- — 7 ) EN SU + 2(7’0 BO, "}/ )?}t EO,SU

In order to control the sign of the energy growth we need tdteet,’ Ey. S;v terms to
i i

zero. We getiry5y = _Ln andry 0Oy = ln So:
Y Y

it it
<||u H2 + H ulu]”) = 2(TN¢O‘N¢ - %)UE—ENZ.W + 2(7_01'0‘01' + %)UJEOZ.W
(A.23)
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it N it N
_2(ﬁNi W - O‘Niﬁ)ﬁNilU;rENivt + 2(601' W - aoiﬁ)ﬁoilv;rEOiut

Given the maximally dissapative conditiongy, v —an, 7% < 0andBy, v —ag, v > 0
we know that3y, > 0 andfy, < 0
’Yit

P=h H Qv — TH YA+ (Ey— EN)S)v  (A.24)

,Z i L Eo(ao,ve + Bo, Siv) +

If we setae = —f3

ttﬁ 1EN1‘(O‘Nivt + /BNiSiv)

it - ita s ij jt it
bt = —%Dzﬁrp -0 - lejt)HlAijv + sztt [(1- VWZ +9" - %)DHU —p
(A.25)
To prescribe boundary conditions at the corners and edgesdy not need a normal
vector except for the spacing coefficient (ida:2 /(dz? + dy? + dz?) ). You can just look
at the contribution to the semidiscrete energy above frarettges (i.e. (x,y,2)=(0,0,2))
or corners (i.e. (x,y,2)=(0,0,N)).

A.2 Proper Boundaries for Harmonic

Conditions for spherical waves in a cartesian grid:
(8 — ) [ (¢ = 96")] =0 (A.26)

Right side subtracted in penalty terms:
it jt

atQP“/ = - (gw - g tt
g

+ 70, H 'Ep, (0, 91" + B0:S:9" + 70,9" — €0,90)
+ v H 'En (an, gl + BN, Sig"” +n.g" — en,gN)

it ~
> D .D_g" — %D,ZQW + S (A.27)

WhereFEYy;, is zero everywhere except the uppgtboundary, andz, is zero everywhere
except the lower; boundary.
We calculate the time derivative of the energy norm:

d 'j ]
a1 (1l 1= T ) = )+ G )= o G+ ) (4.28)
And apply summation by parts in the integration:
; Vij i=N; Vit =i
E = zﬁ(ufsjv) s —QW(U;—W) |m=l (A.29)

z;=0

T T T T
+ 2T01. Q, Uy EO,’ V¢ + 27’01. ﬂoivt EOZ- S;v + 27’01."}/01.1)15 EO,'U — 27’01. €0, Vg Eoigo

T T T T
+ 2TNiaNivt ENiUt + QTNiBNiUt ENiS’iU + QTNi'YNiUt ENZ-U — QTNieNivt ENZ.gN
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Which simplifies to:
it it

E = 2(TNiaNi — %)U;EN,'W + 2(T0i040i + %)vonivt (A.30)

Vij T Wij T
+ 2(TN1'BN¢ — W)Ut ENiSiU + 2(7’0iﬂ0i =+ W)Ut EOiSiU
+ 207w, ) Engo 4 2(70,70, )00 Eo,v
+ 2(mw,en;)v) En,g0 + 2(70,€0,)v, Eo,90

In order to control the sign of the energy growth we need tareet,” Fy, S;v terms

v v
to zero. We getrofy = ——; andry By = —.
Y Y
So:
) ~it N
E = —2(ﬁNiW — aNiW)ﬁvaj En,v (A.31)
,.Yit ,Yz'j B
+ 2(/801 W - aOiW)BOiIU;rEOiUt

+ Q(TNi'YNi)U;rENiU + 2(TOi'YOi)U;rEOiU
+ 2(rv,en,)v) En,go + 2(7o,€0,)v; Eo,g0
Given the maximally dissipative conditiong3y,v* — ay,v? < 0 and 3,7 —
a7 > 0 we know that3y, > 0 andfy, < 0.
For the harmonic system the interior is:
it

w_ I om i p TN ety
%Q —WDH—Q - (v +7)H iy (A.32)

The full evolution equation with the Boundaries is then

it L yitgit
Q" = —EDHQW - (7 + 7)}1_ (Aij + (Eo — En)Si)v"(A.33)
2,}/2‘]' B ,}/it Qp,l/ 2
+ W“ﬁoH YEo, [(1+ W)DHW” T + T_Q(WW — 90)]
2,)/1] it Qv

_ ot Q 2r
B (- D+ G4 e — g

BN

Wherey,, = \/=gg"” andQ"” = ¢g'*9,+". Thus we can show that the energy growth
of the system is bounded.
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A.3 Constraint Preserving Boundary Conditions

The constraint equations
CH = —OpyM* — 0y yH™ — By — 9,yH* — S (A.34)

are used to set the conditions for the four valyés. We plug these into Sommerfeld
type conditions chosen to be (for the upper bound):

(a,; + 8, + %) (v*8 =~ B) =0 (A.35)
giving us the conditions for the threg'”.
<am + O+ %) (Y =" =~ +154) =0 (A.36)
giving us the twoy®* since we knowy* from the constraints.
(ax + 0 + %) (Y = 29" 4 4 — Al 4+ 29— A57) =0 (A.37)
Which finally gives usy** since we knowy!* and~*! from the constraints. Where AB
are the directions prependicular to the boundaries and keiglirection outward of the

boundary face. There are a number of ways to vary this, whiciidcbe experimented
with.

This give the 10 conditions (at the x=1 boundary):
(Or + 01) 7™ = 94" — 07" — 07" — 0.4% = §°

(Or + 01) " = 0™ = 0™ — 0712 — 041 = S
(02 + Or) 0% = 9,7 — 9,412 — (i)yf},?? — 9,4 - 52
(O + 0) 7" = 09" = 97" — 07 — 047 — 57
! 1
(O +0) 7" = (02 +0) (29" =9") = (4" = 2" +9%)+ (@; + F) (! — 299 + 489
(0 +0)7 =0 +0) (V= 02) — = (v2 =) +

(713 _ 703) i

(762 = %02) + 0a%p”

Sl= 3=
e e A

(0 + )72 = (8, + ) (Y —13%) - (%2 = 90°) + 0u1g?

(O +0) 7?2 = —= (v*2 = 132) + 0132

0r + 007" = == (7" = 2°) + 0o

Sl 3= 3=

(0r +0) 7" = —= (v = 78%) + 0u1®
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A.4 On the convergence tests

The effects of the initial transient modes can last for défeé amounts of time for the
different resolutions. A comparison of tiig}, waveforms between the three resolutions
confirms this shift in time — the waveform maxima are seenighty different times for
the different resolutions. We attempt to undo this effecintgnually shifting the time-
coordinate of the medium and high resolution runs

t— ¢+ 6t. (A.38)

The value ofét is set for the medium and high resolution runs independeusifng the
minimization condition

o 170
—— t —t 4+ 6t) — Qupigh|*dt = 0. A.39
555 L, 10— 14 8) = Qui Pt =0 (239
This effectively means aligning in time the peak amplitutithe three runs, dt~ 160 M.
Solving Eqg. A.39) numerically for theQ;, waveforms gives

Otg.024 = 0.4756 and Otg.018 = 0.1078. (A40)

Applying the time-shifting condition Eq.A(38) to the coarse and medium resolu-
tion data, and inserting the result into Eg$.20—(4.21) gives convergence rates that are
consistent with the theoretical expectations.

In TableA.1 we report the convergence rates as calculated frondl 2§ for the time
interval0 < u < 190 (u is the retarded time as defined in S&d.2 which excludes the
initial burst but contains the rest of the waveform. We seselto fourth-order conver-
gence for the¢ = 2 modesQy, andQy;. Thel = m = 3 modeQ3;, on the other hand,
shows second order convergence in phase, which is most tigdelted to the fact that the
magnitude of this mode is the same size as the finite differenor inQ3, and is a factor
of 40 smaller than the magnitude &f}, itself.

The final kick-velocity magnitude in units &in /s is
[v|kick = 263.49, 259.75, and 261.00 (A.42)

for the medium, high and very-high resolutions. This gigé® i) = 2.98 which can
be inserted into Eq4(2)) to obtain a calculated convergence rate GD.

A.5 Details on the extraction ofy,

The numerical solution of Eqs4{29 involves first an interpolation o¥, as calculated
according to Eqs4(25 from its values on the Cartesian grid to those onto the etitna
sphere by using fourth-order Lagrange interpolants. Bezatfithe symmetry across the
z = 0 plane the interpolation is effectively done on the upperisphere only, thus using
a spherical coordinate system with¢ € [0,7/2] x [0,2x] and applying cell-centered
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Figure A.1: Left panel: Evidence that the conditions for the Peeling theorem are
met also for®¥s;, which scales as—2 when extracted at isotropic radii
r, = 30M, 40 M, 50 M, and60 M. This figure should be compared
to the corresponding Figt.5. Right panel:The same as the left panel but
for the gauge-invariant quantityy,, which is shown to be constant when
extracted at isotropic radii, = 30 M, 40 M, 50 M, and60 M .
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Table A.1: Integrated convergence rates of the Zerilli-Moncrief gainyariant vari-
ables providing the dominant contribution in the kick-vatgy measure-
ments. As the numbers indicate, we achieve at least thirek @zhvergence
both in amplitude and phase. A time-shift as given by E4s38)—(A.40)
was made on the raw data to remove the near cancellation loitlest-order
error terms.

Q @31 Q3 Q33
ry/M amp phase amp phase amp phase
30 451 3.95 4.656 431 432 2.13
40 4.08 3.70 4.61 434 426 2.62
50 3.83 444 435 4.76 4.02 2.39

discretization along thé-direction to avoid the coordinate singularities at theegain the
sphere.

The angular resolution is chosen so that the spackjandA¢ are equal and of the
same order as the corresponding Cartesian spacings offihement level in which the
largest extraction 2-sphere is located. As an exampleh®fitucial finest resolution of
h = 0.024 M, the largest extraction radius israt = 60 M and in a region covered by the
second refinement level with spacing;°%! = 1.536 M. To obtain an equivalent spacing
on the 2-sphere, we solve fdvd and A ¢ such that

ro A0 =1 Ad ~ A%0% = 1.536 M . (A.42)

The resulting number of grid points ¥y = 56 along thed-direction andV,, = 224 along
the ¢-direction.

After interpolation onto the extraction sphere, we firstaoddte the time integral of
U,|s2 and afterwards, the surface integral of the absolute scpfattee former accord-
ing to Egs. 4.29. These integrals are both computed using fourth-ordeersels. In
particular, for the surface integral, we use Simpson'’s irutbe form

N 17 59 43 49
d ~ Az |— — — —
/mO z f(x) z 48f0+48f1+48f2+48f3
+(fr)
49 43 59 17
— N3+ —f N2 +—fN_1+— A.4
+48fN 3+48fN 2+48fN 1+48fN] ; (A.43)
where (fi) is the sum over allf, with 3 < k£ < N — 3. The integral overfd¢ is
obtained by computing the tensor product of the RHS of E44l3), i.e.,

Ny Ng

On
/ d@/ d@f ) ~ A9A¢Z Z CiCj fij s

i=0 j=0
(A.44)

where thec;, ¢; are the coefficients in the RHS of Eqé.43).
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The time integral of Eqs.4(29 is generically calculated by using the fourth-order
Simpson’s rule in such a way that the integral for the time &tases only past time steps
1 with 0 < ¢ < k. Care is required for the very first time steps, for which weehiess
than 7 evaluations of the integrand. In this case, we usertieBder accurate trapezoid
ruleif N =1,3,0r5

[ e fw) = e ok )+ 5] (A.45)

0

or the fourth-order accurate Simpson'’s rule

/dexf(x) ~ Ax _%fo—l—%fl

o

+<§f2k + §f2k+1> + éfN] , (A.46)

if N =2 40r6. ForN > 7we simply use Simpson’s rule in the fori.43). It should be
noted that the use of a higher-order time integration schiempeoves the overall accuracy
in the calculation of the final recoil velocity by more thareatbr of 10.

A.6 A comparison of wave-extraction methods

In Fig. 4.5, we have shown tha¥, as extracted at different radii correctly scales with
the 1/r falloff as predicted by the peeling theorem. Here, we alseckhf all other
components of the Weyl tensor exhibit the corrett™,, = const. scaling.

The left panel of FigA.1 indeed shows that the scaling property of®)] behave as
expected. In the course of the same analysis, it is also iaolting at the waveforms as
calculated by using the gauge-invariant formalism. Inipaldr, we focus on the real part
of the/ = 2, m = 2 even parity wave mod@éf2 and check for the correct scaling for the
different extraction radii. The right panel of Fig.1 shows thatQ3, is constant for all
extraction radii as expected.

As a final remark, we will also compare the andh as calculated by using the odd
and even master functions in the gauge-invariant formaéisoording to Eq.4.31) and
the spin-weighted spherical harmonic amplitudes of the IWegnponent¥{™ decom-
posed on the extraction spheres. Using these amplitudesetric perturbations ; , 7«
recovered by a double time integral of E4.27)

t t
hy —ihy = lim > / dt’ / dt" " oY, (A.47)
r—00 Z ™ 0 0

The numerical integration of EgA(47) requires knowledge of an integration constant
for the calculation of the second integral to eliminate thedr offset. This constant is
determined by searching for minima in th&™ mode and averaging over them. The
resulting value is used as the integration constant. In bagies, we only consider the
dominant contribution from modé= 2, m = 2.
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A.6 A comparison of wave-extraction methods

—— <\]P4)22
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Figure A.2: Comparison of the two polarization amplitudies (upper graph) and
(lower graph) as computed witlir, (continuous black line) or with the
gauge invariant quantitie@jm (dashed red line). Note the two polariza-
tions are computed using the lowest (and dominant) mukipet 2, m =

2 and are extracted af, = 50 M.
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Figure A.3: Left panel: Coordinate trajectories for one of the black holes for ithe
compared with similar models where the initial linear motagmave been
changed byt3% in order to modify the eccentricity of the inspirdRight
panel: Recoil velocity for ther0 case is compared with similar models for
which the initial eccentricity has been increased by addimgj subtracting
3% of the initial linear momentum of the black holes relatieethe r0
values. The effect of increased eccentricity in the finalgeeis to increase
the size of the kick, by about 4% in both cases.

A.7 On the influence of orbital eccentricity

Another source of potential error in calculating a “phy8iééack comes from the choice
of initial data parameters. Our evolutions begin from fagllose separations, comprising
at most the last 2-3 orbits. As such, parameters for quagidar orbits determined by
the effective potential method, give only approximatiomshie true orbital parameters for
black holes that have spiraled in from infinity, and it is kmothat the method produces
a non-trivial residual eccentricity for initial data at slvseparation. This eccentricity can
have significant effects on the orbital trajectories befosrger, and a potential influence
on the calculated recoil. To test this we have evolved twoifisabdr0 models, one in
which the initial linear momenta of the black holes3i§ larger than that specified in Ta-
ble 4.1, and another in which the linear momenta 2% smaller. The modified momenta
have the effect of changing the orbital energy of the bodies fthe minima determined
by the effective potential method, introducing an addgioeccentricity to the evolution.
The resulting black hole trajectories and kick determoratiare shown respectively in
Fig. A.3. We see that although the level of applied eccentricityigdaand in fact much
larger than the expected eccentricity due to the intringkcguracy of the effective poten-
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tial method, it modifies the recoil by only abou km/s, that is, 4%. Further, in both
the high and low energy cases, the recoil is increased ogdidircialr0 case, suggesting
that increased eccentricity generically leads to a skghatiger recoil.

A.8 Sensitivity curves

For convenience, we report below the sensitivity curves tisecompute the SNRs that
are often difficult to collect from the literature. For LISAewve use the same noise curve
as for the LISA Mock Data Challenge 3 [263] as implemented bgsTand Sintes, and
made available by the LISA Parameter Estimation Task F&64][ The noise curve for
advanced Virgo can be found in tabulated form in Ref. [220].

LIGO
Sn(f) = So { (4';—3]0>_56 +0.16 (%)_4'52 +0.52 4+ 0.32 (%)2} 7

So=9x1074,  fy =150 Hz,
AdLIGO

Su(f) zSo{(%)_4'14—5<%)2+111 (1_ (f_{))2+% (%)4> <1+% (%)2>1} |

So=10"%, fy =215Hz,

s =sf () "+ 8 (8)+ [ (5) ]}

So=10.2 x 10746, £y =500 Hz.

Virgo

(A.48)
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